DOI QR코드

DOI QR Code

Change of Sludge Denitrification and Nitrification Rate according to the Operating Conditions in Advanced Wastewater Treatment Processes

하수고도처리공법의 유입하수량 변화에 따른 슬러지 질산화/탈질속도 변화

  • Lee, Myoung-Eun (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology) ;
  • Oh, Jeongik (Land & Housing Institute, Korea Land & Housing Corporation) ;
  • Park, No-Suk (Department of Civil Engineering, Gyeongsang National University) ;
  • Ko, Dae-Gon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology) ;
  • Jang, Haenam (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology) ;
  • Ahn, Yongtae (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology)
  • 이명은 (경남과학기술대학교 에너지공학과, 미래융복합기술연구소) ;
  • 오정익 (한국토지주택공사 토지주택연구원) ;
  • 박노석 (경상대학교 토목공학과) ;
  • 고대곤 (경남과학기술대학교 에너지공학과, 미래융복합기술연구소) ;
  • 장해남 (경남과학기술대학교 에너지공학과, 미래융복합기술연구소) ;
  • 안용태 (경남과학기술대학교 에너지공학과, 미래융복합기술연구소)
  • Received : 2018.01.23
  • Accepted : 2018.02.05
  • Published : 2018.02.28

Abstract

The purpose of this study is to investigate the changes of sludge characteristics according to the changes of influent sewage flowrate in the advanced wastewater treatment processes including MBR, SBR, and $A_2O$. The ratio of the actual sewage flowrate to the design flowrate is decreased from 100% to 70, 40%, and 10%, and the specific denitrification rate and ammonia oxidation (nitrification) rate was measured. The specific nitrification rate of the sludge collected from the aeration tank of each process was measured at a similar value ($0.10gNH_4/gMLVSS/day$) in all three process under the condition of 100% of sewage flowrate. It has tended to decrease significantly as the sewage flowrate decreased from 70% to 40%. The specific denitrification rate was also decreased by ~50% as the sewage flowrate decreased. However, considering the total nitrogen concentration in the influent and the microbial concentration in the reactor, the changes in kinetic parameter did not affect overall nitrogen removal. Therefore, it can be concluded that stable nitrogen removal will be possible under low influent flowrate condition if the MLVSS concentration is kept high.

본 연구에서는 막결합생물반응조(MBR)공법을 비롯한 하수고도처리공법에서 유입하수량의 변화에 따른 슬러지 특성 변화를 파악하고자 하였다. 일 1.5톤을 처리하는 모형실험시설에서 설계유량 대비 유입하수량을 100, 70, 40, 10%로 변화시켜가며 이에 따른 비탈질속도(specific denitrification rate)와 비질산화속도(specific ammonia oxidation rate)의 변화를 측정하였다. 각 공법의 폭기조에서 채취한 슬러지의 비질산화속도는 유입하수량 100% 조건에서 세 가지 공법 모두 유사한 값($0.10gNH_4/gMLVSS/day$)으로 측정되었다. 유입하수량이 70%에서 40%로 감소함에 따라 비질산화속도가 크게 감소하는 경향을 나타냈다. 비탈질속도 역시 유입하수량이 감소함에 따라 최대 50%가량 감소하였다. 유입하수량이 감소할수록 비탈질속도와 비질산화속도가 감소하는 경향을 나타냈으나 원수의 총질소 농도와 반응조 내 미생물 농도를 고려하면 질소제거율에 영향을 미칠 정도는 아니었다. 따라서 유입하수량이 감소하는 경우에도 반응조 내 미생물 농도를 높게 유지할 수 있다면 안정적인 질소 제거가 가능할 것으로 판단된다.

Keywords

References

  1. Ministry of Environment, Statistics of Sewerage (2016).
  2. D. Barnes and P. J. Bliss, "Biological Control of Nitrogen in Wastewater Treatment", E. & F. N. SPON, New York (1983).
  3. H.-D. Ryu and S.-I. Lee, "Comparison of removal characteristics of organic matter, nitrogen and phosphorus between suspended-growth and attached-growth biological processe", Journal of Korean Society of Environmental Engineers, 27, 206 (2005).
  4. Z. Fu, F. Yang, Y. An, and Y. Xue, "Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR)", Biochemical Engineering Journal, 43, 191 (2009). https://doi.org/10.1016/j.bej.2008.09.021
  5. M. Kim and G. Nakhla, "Comparative assessment of a novel MBR and $A_2O$ for biological nutrient removal", Proceedings of the Water Environment Federation, 2008, 1765 (2008). https://doi.org/10.2175/193864708788733819
  6. N. Yusof, M. A. Hassan, L. Y. Phang, M. Tabatabaei, M. R. Othman, M. Mori, M. Wakisaka, K. Sakai, and Y. Shirai,, "Nitrification of ammonium-rich sanitary landfill leachate", Waste Management, 30, 100 (2010). https://doi.org/10.1016/j.wasman.2009.08.018
  7. S. S. Han, T. H. Bae, G. G. Jang and T. M. Tak, and Tae-Moon, "Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system", Process Biochemistry, 40, 2393 (2005). https://doi.org/10.1016/j.procbio.2004.09.017
  8. X. Huang, P. Gui, and Y. Qian, "Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor", Process Biochemistry, 36, 1001 (2001).
  9. B. Lesjean, R. Gnirss, H. Buisson, S. Keller, A. Tazi-Pain, and F. Luck, "Outcomes of a 2-year investigation on enhanced biological nutrients removal and trace organics elimination in membrane bioreactor (MBR)", Water science and technology, 52, 453 (2005). https://doi.org/10.2166/wst.2005.0723
  10. R. Dawson and K. Murphy, "The temperature dependency of biological denitrification", Water Research, 6, 71 (1972). https://doi.org/10.1016/0043-1354(72)90174-1
  11. P. Elefsiniotis and D. Li, "The effect of temperature and carbon source on denitrification using volatile fatty acids", Biochemical Engineering Journal, 28, 148 (2006).
  12. N. S. Park J. I. Oh, M.E. Lee, H. Jang, and Y. Ahn, "Effect of influent flowrate on the performance of biological wastewater treatment processes", Desalination and Water Treatment (under review) (2018).