DOI QR코드

DOI QR Code

Enhancement of CO2 permeance by incorporating CaCO3 in Mixed Matrix Membranes

CaCO3을 이용한 혼합매질분리막의 이산화탄소 투과도 향상

  • Park, Cheol Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jung, Jung Pyo (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 박철훈 (연세대학교 화공생명공학과) ;
  • 정정표 (연세대학교 화공생명공학과) ;
  • 이재훈 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2018.01.31
  • Accepted : 2018.02.17
  • Published : 2018.02.28

Abstract

With vigorous development of petroleum and chemical industry, emission of carbon dioxide has attracted tremendous attention globally due to global warming problem and abnormal climate change. To address these problems, in this study, a PEGBEM-g-POEM graft copolymer with high $CO_2$ affinity was synthesized and $CaCO_3$ was incorporated to form mixed matrix membranes (MMMs) for enhancement of $CO_2$ permeance. By varying the addition weight of $CaCO_3$ in MMMs, high separation performance of $CO_2$ over $N_2$ was obtained. At 50 wt% loading of $CaCO_3$, the greatest separation performance was obtained with an enhanced $CO_2$ permeance from 22.5 to 28.16 GPU and slightly increased $CO_2/N_2$ selectivity from 44.7 to 45.42. It resulted from the increased $CO_2$ solubility of MMMs due to specific interaction between $CaCO_3$ and $CO_2$ molecules. Upon excess loading of $CaCO_3$, MMMs exhibited loss of $CO_2$ separation performance due to the formation of interfacial defects. Based on this result, it is considered that the proper addition of $CaCO_3$ is crucial for improvement of $CO_2$ separation performance.

급진적인 산업발전에 따른 무분별한 이산화탄소 배출로 인하여 지구온난화, 이상 기후 등의 문제가 불거지고 있으며 이는 한 나라에만 국한되지 않은 국제적인 문제가 되었다. 위와 같은 문제를 해결하고자 본 연구에서는 이산화탄소에 대해 높은 친화도를 가지고 있는 PEGBEM-g-POEM 가지형 공중합체를 합성하였으며 $CaCO_3$염을 첨가하여 염의 중량에 따른 혼합매질분리막의 이산화탄소/질소 투과 성능을 관찰하였다. $CaCO_3$염이 고분자 중량 대비 50% 첨가되었을 때 최적의 이산화탄소/질소 분리 투과성능을 보였으며, 선택도는 염을 추가하기 전 44.7에서 45.42로 크게 변하지 않은 반면 이산화탄소 투과도는 염을 첨가하기 전 22.5 GPU에서 28.16 GPU로 약 25% 향상되었다. 이는 첨가한 염과 이산화탄소간의 상호작용으로 인하여 향상된 고분자 복합막의 이산화탄소에 대한 용해도에 기인하는 것으로 생각된다. 또한 염을 과량으로 첨가한 경우에는 고분자가 복합막의 표면을 충분히 메우지 못하여 계면결함이 생성되었으며 이로 인해 이산화탄소 기체 분리성능이 감소하였다. 기체분리성능 향상을 위해서는 적정량의 염 첨가가 필수적인 것으로 분석되었다.

Keywords

References

  1. X. Li, M. Wang, S. Wang, Y. Li, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, and B. Wang, "Constructing $CO_2$ transport passageways in $Matrimid^{(R)}$ membranes using nanohydrogels for efficient carbon capture", J. Membr. Sci., 474, 156 (2015). https://doi.org/10.1016/j.memsci.2014.10.003
  2. C. Song, "An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel", Catal. today, 86, 211 (2003). https://doi.org/10.1016/S0920-5861(03)00412-7
  3. X. Xu, C. Song, B. G. Miller, and A. W. Scaroni, "Influence of moisture on $CO_2$ separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41", Ind. Eng. Chem. Res., 44, 8113 (2005).
  4. M. Yue, Y. Hoshino, Y. Ohshiro, K. Imamura, and Y. Miura, "Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment", Angew. Chem. Int. Ed., 53, 2654 (2014). https://doi.org/10.1002/anie.201309758
  5. M. Zhou, D. Korelskiy, P. Ye, M. Grahn, and J. Hedlund, "A uniformly oriented MFI membrane for improved $CO_2$ separation", Angew. Chem. Int. Ed, 53, 3492 (2014). https://doi.org/10.1002/anie.201311324
  6. R. S. Dimitrov, "The Paris agreement on climate change: Behind closed doors", Glob. Environ. Politics (2016).
  7. M. Hulme, "$1.5^{\circ}C$ and climate research after the Paris Agreement", Nat. Clim. Change, 6, 222 (2016). https://doi.org/10.1038/nclimate2939
  8. J. Rogelj, M. Den Elzen, N. Hohne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, and M. Meinshausen, "Paris agreement climate proposals need a boost to keep warming well below $2^{\circ}C$", Nature, 534, 631 (2016). https://doi.org/10.1038/nature18307
  9. J. Fang, J. Tong, and K. Huang, "A superior mixed electron and carbonate-ion conducting metal-carbonate composite membrane for advanced flue-gas carbon capture", J Membr. Sci., 505, 225 (2016). https://doi.org/10.1016/j.memsci.2016.01.041
  10. K. W. Ki and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/$Al_2O_3$ composite membrane for $CO_2$ Separation", Membr. J., 27, 226 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.226
  11. S. Patrício, E. Papaioannou, G. Zhang, I. Metcalfe, and F. Marques, "High performance composite $CO_2$ separation membranes", J. Membr. Sci., 471, 211 (2014).
  12. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabres i Xamena, and J. Gascon, "Metal-organic framework nanosheets in polymer composite materials for gas separation", Nat. Mater., 14, 48 (2015). https://doi.org/10.1038/nmat4113
  13. W. S. Chi, J. H. Lee, M. S. Park, and J. H. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  14. Z. Xiang, R. Mercado, J. M. Huck, H. Wang, Z. Guo, W. Wang, D. Cao, M. Haranczyk, and B. Smit, "Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture", J. Am. Chem. Soc., 137, 13301 (2015). https://doi.org/10.1021/jacs.5b06266
  15. L. Zhang, N. Xu, X. Li, S. Wang, K. Huang, W. H. Harris, and W. K. Chiu, "High $CO_2$ permeation flux enabled by highly interconnected three-dimensional ionic channels in selective $CO_2$ separation membranes", Energy Environ. Sci., 5, 8310 (2012). https://doi.org/10.1039/c2ee22045h
  16. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  17. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  18. C. H. Cho, S. J. Jeong, J.-Gu Yeo, and H. H. Moon, "A study on permeation of $CO_2-N_2-O_2$ mixed gases through a NaY zeolite membrane under permeate evacuation mode", Membr. J., 23, 352 (2013).
  19. J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastiaan, C. Casado, and J. Coronas, "Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives", Chem. Mater., 24, 2829 (2012). https://doi.org/10.1021/cm301435j
  20. H. Lee and N. Han, "Preparation of PEGDA/PETEDA dendrimer membranes for $CO_2$ separation", Membr. J., 23, 54 (2013).
  21. Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo, and D. Zhao, "Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient $CO_2$ separation", Chem. Mater, 28, 1277 (2016). https://doi.org/10.1021/acs.chemmater.5b02902
  22. Z. Kang, M. Xue, L. Fan, L. Huang, L. Guo, G. Wei, B. Chen, and S. Qiu, "Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane", Energy Enviro. Sci., 7, 4053 (2014). https://doi.org/10.1039/C4EE02275K
  23. K. Kusakabe, T. Kuroda, K. Uchino, Y. Hasegawa, and S. Morooka, "Gas permeation properties of ion-exchanged faujasite-type zeolite membranes", AIChE J., 45, 1220 (1999). https://doi.org/10.1002/aic.690450608
  24. S. Li, J. L. Falconer, and R. D. Noble, "Improved SAPO-34 Membranes for $CO_2/CH_4$ Separations", Adv. Mater., 18, 2601 (2006). https://doi.org/10.1002/adma.200601147
  25. S. Qiu, M. Xue, and G. Zhu, "Metal-organic framework membranes: From synthesis to separation application", Chem. Soc. Rev., 43, 6116 (2014). https://doi.org/10.1039/C4CS00159A
  26. X.-L. Zhang, L.-F. Qiu, M.-Z. Ding, N. Hu, F. Zhang, R.-F. Zhou, X.-S. Chen, H. Kita, "Preparation of zeolite T membranes by a two-step temperature process for $CO_2$ separation", Ind. Eng. Chem. Res., 52, 16364 (2013).
  27. A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, "$Pebax^{(R)}$/polyethylene glycol blend thin film composite membranes for $CO_2$ separation: performance with mixed gases", Sep. Purif. Technol., 62, 110 (2008). https://doi.org/10.1016/j.seppur.2008.01.001
  28. J. P. Jung, C. H. Park, J. H. Lee, Y.-S. Bae, and J. H. Kim, "Room-temperature, one-pot process for $CO_2$ capture membranes based on PEMA-g-PPG graft copolymer", Chem. Eng. J., 313, 1615 (2017). https://doi.org/10.1016/j.cej.2016.11.031
  29. C. H. Park, J. H. Lee, J. P. Jung, B. Jung, and J. H. Kim, "A highly selective PEGBEM-g-POEM comb copolymer membrane for $CO_2/N_2$ separation", J. Membr. Sci., 492, 452 (2015).
  30. W. S. Chi, S. U. Hong, B. Jung, S. W. Kang, Y. S. Kang, and J. H. Kim, "Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes" J. Membr. Sci., 443, 54 (2013). https://doi.org/10.1016/j.memsci.2013.04.049
  31. T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  32. S. Husain and W. J. Koros, "Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation", J. Membr. Sci., 288, 195 (2007). https://doi.org/10.1016/j.memsci.2006.11.016