DOI QR코드

DOI QR Code

Transmembrane Pressures for the Submerged Flat Membrane in the Activated Sludge Solution by Circulation of the Cleaning Spherical Beads

세척용 구형입자 순환에 따른 활성슬러지내 침지식 평막의 막간차압

  • Jeong, Doin (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Min, Ji Su (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Lee, Soo Min (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 정도인 (서울과학기술대학교 화공생명공학과) ;
  • 민지수 (서울과학기술대학교 화공생명공학과) ;
  • 이수민 (서울과학기술대학교 화공생명공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2018.02.18
  • Accepted : 2018.02.24
  • Published : 2018.02.28

Abstract

In this study the cleaning spherical beads with same density as water were fabricated. Bead moving velocity was measured with respect to the aeration rate and bead concentration in water reservoir. The permeation experiments for FR (filtration and relaxation) and SFCO (sinusoidal filtration continuous operation) modes were simultaneously carried out under the condition of 1 to 3% cleaning spherical bead concentration, 20 LMH and 500 mL/min aeration rate in the MLSS 8,000 mg/L activated sludge solution. The used membrane was the $90cm^2$ effective area and $0.4{\mu}m$ nominal pore size flat membrane. The TMP (transmembrane pressure) decreased as the bead concentration increased, and was shown most effective in FR mode with 2% bead concentration.

본 연구에서는 순수와 유사한 밀도의 세척형 구형 입자를 제작하고 순수 수조 내에서 산기량 및 입자 농도에 따른 입자의 유동 속도를 측정하였다. 세척형 구형 입자 1~3%를 MLSS 8,000 mg/L인 활성슬러지 용액에 주입하고 20 LMH 및 산기량 500 mL/min 조건에서 FR 및 SFCO 모드로 동시에 투과 실험하였다. 사용한 분리막은 유효 막면적이 $90cm^2$, 공칭 세공크기가 $0.4{\mu}m$인 평막이다. 입자 농도가 증가할수록 TMP가 감소하였으며 FR 모드, 입자 농도 2%일 때 가장 효과적인 것으로 확인되었다.

Keywords

References

  1. O. Ferrer, R. Casas, C. Galvan, F. Lucena, A. Vega, O. Gibert, J. Jofre, and X. Bernat, "Challenge tests with virus surrogates: An accurate membrane integrity evaluation system", Desalination and Water Treat., 51, 25 (2013).
  2. I. H. Won, W. G. Jang, K. Y. Chung, and H. S. Byun, "Preparation of PVdF/GO composite nanofibrous flat membrane and its permeation characteristics in activated sludge", Membr. J., 25, 67 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.67
  3. J. H. Lee, J. H. Yun, and H. S. Byun, "Integration of graphene oxide into PAN nanofibers with improved physical property", Membr. J., 27, 255 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.255
  4. K. G. Song, Y. Kim, and K. H. Ahn, "Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor", Desalination, 221, 467 (2008). https://doi.org/10.1016/j.desal.2007.01.107
  5. K. Y. Kim, J. H. Kim, Y. H. Kim, and H. S. Kim, "The effect of coagulant on filtration performance in submerged MBR system", Membr. J., 16, 182 (2006).
  6. D. J. Jeong and K. Y. Chung, "Critical flux with respect to aeration rate for the submerged microfiltration hollow fiber membrane in the activated sludge solution", Membr. J., 26, 116 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.116
  7. F. Wicaksana, A. G. Fane, and V. Chen, "Fibre movement induced by bubbling using submerged hollow fibre membranes", J. Membr. Sci., 271, 186 (2006).
  8. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of gel layer removal for intermittent aeration in the MBR Process", Membr. J., 16, 188 (2006).
  9. I. H. Won, H. W. Lee, H. J. Gwak, and K. Y. Chung, "Transmembrane pressure of flat-sheet membrane in emulsion type cutting oil solution for symmetric/asymmetric sinusoidal flux continuous operation mode", Membr. J., 25, 320 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.320