DOI QR코드

DOI QR Code

Development of Graphene Nanocomposite Membrane Using Layer-by-layer Technique for Desalination

다층박막적층법을 이용한 담수화용 그래핀 나노복합체 분리막 개발

  • Yu, Hye-Weon (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Song, Jun-Ho (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Chang-Min (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Yang, Euntae (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, In S. (School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • 유혜원 (광주과학기술원 지구환경공학부) ;
  • 송준호 (광주과학기술원 지구환경공학부) ;
  • 김창민 (광주과학기술원 지구환경공학부) ;
  • 양은태 (광주과학기술원 지구환경공학부) ;
  • 김인수 (광주과학기술원 지구환경공학부)
  • Received : 2018.02.01
  • Accepted : 2018.02.27
  • Published : 2018.02.28

Abstract

Forward osmosis (FO) desalination system has been highlighted to improve the energy efficiency and drive down the carbon footprint of current reverse osmosis (RO) desalination technology. To improve the trade-off between water flux and salt rejection of thin film composite (TFC) desalination membrane, thin film nanocomposite membranes (TFN), in which nanomaterials as a filler are embeded within a polymeric matrix, are being explored to tailor the separation performance and add new functionality to membranes for water purification applications. The objective of this article is to develop a graphene nanocomposite membrane with high performance of water selective permeability (high water flux, high salt rejection, and low reverse solute diffusion) as a next-generation FO desalination membrane. For advances in fabrication of graphene oxide (GO) membranes, layer-by-layer (LBL) technique was used to control the desirable structure, alignment, and chemical functionality that can lead to ultrahigh-permeability membranes due to highly selective transport of water molecules. In this study, the GO nanocomposite membrane fabricated by LBL dip coating method showed high water flux ($J_w/{\Delta}{\pi}=2.51LMH/bar$), water selectivity ($J_w/J_s=8.3L/g$), and salt rejection (99.5%) as well as high stability in aqueous solution and under FO operation condition.

정삼투법을 이용한 해수담수화는 역삼투 공정에 비해 에너지 절감이 가능하여 해수담수화 차세대 기술로 주목받고 있다. 막을 기반으로 하는 수처리 분야에서 분리 성능을 향상시키고 새로운 기능을 부여하기 위해, 고분자 매트릭스에 필러인 나노물질을 삽입하는 박막 나노복합체 분리막(thin film nanocomposite, TFN) 개발에 대한 연구가 요구되고 있다. 본 연구에서는 딥 코팅(dip coating) 방법을 기반으로 한 다층박막적층법(Layer-by-layer, LBL)을 이용하여 산화그래핀(graphene oxide, GO)의 나노 적층구조를 제어하여, 정삼투 공정에서의 높은 안정성 및 높은 수투과도 및 염 제거, 낮은 염 역확산을 갖는 그래핀 나노복합체 분리막을 개발하고자 하였다. 정삼투 공정의 성능 향상을 위한 산화그래핀의 환원 반응시간과 LBL 딥코팅 적층 수의 최적화를 통해, 수투과도 2.51 LMH/bar, 물분자 선택성 8.3 L/g, 염 제거율 99.5%를 갖는 나노복합체 분리막을 개발하였다. 이는 상용화된 CTA FO 분리막보다 수투과도는 10배, 물분자 선택성은 4배 높게 향상되었으며, 염 제거율은 비슷한 수준으로 나타났다.

Keywords

References

  1. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity", Science, 356, 1137 (2017).
  2. M. L. Lind, D. U. Suk, T. V. Nguyen, and E. M. V. Hoek, "Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance", Environ. Sci. Technol., 44, 8230-8235 (2010). https://doi.org/10.1021/es101569p
  3. C. M. Kim, K. B. Park, K. S. Kim, and I. S. Kim, "Fabrication of ceramic-based graphene membrane (CbGM) and its mass transport behavior for water treatment", J. Korean Soc. Environ. Eng., 37, 649 (2015). https://doi.org/10.4491/KSEE.2015.37.11.649
  4. W. J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. P. Chen, and A. F. Ismail, "A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches", Wat. Res., 80, 306 (2015). https://doi.org/10.1016/j.watres.2015.04.037
  5. D. C. Tanugi and C. J. Grossman, "Water desalination across nanoporous graphene", Nano Lett., 12, 3602 (2012).
  6. Z. Zhang, L. Zou, C. Aubry, M. Jouiad, and Z. Hao, "Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane", J. Membr. Sci., 515, 204 (2016). https://doi.org/10.1016/j.memsci.2016.05.054
  7. W. S. Hung, C. H. Tsou, M. D. Guzman, Q. F. An, Y. L. Liu, Y. M. Zhang, C. C. Hu, K. R. Lee, and J. Y. Lai, "Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing", Chem. Mater., 26, 2983 (2014). https://doi.org/10.1021/cm5007873
  8. J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, P. Carbone, A. K. Geim, and R. R. Nair, "Tunable sieving of ions using graphene oxide membranes", Nat. Nanotech., 12, 546 (2017). https://doi.org/10.1038/nnano.2017.21
  9. Y. H. Xi, J. Q. Hu, Z. Liu, R. Xie, X.J. Ju, W. Wang, and L. Y. Chu, "Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing", ACS Appl. Mater. Interfaces, 8, 15557 (2016). https://doi.org/10.1021/acsami.6b00928
  10. B. Mi, "Graphene oxide membranes for ionic and molecular sieving", Science, 343, 740 (2014). https://doi.org/10.1126/science.1250247
  11. M. Hu and B. Mi, "Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction", J. Membr. Sci., 469, 80 (2014).
  12. B. Liang, W. Zhan, G. Qi, S. Lin, Q. Nan, Y. Liu, B. Cao, and K. Pan, "High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination application", J. Mat. Chem. A, 3, 5140 (2015). https://doi.org/10.1039/C4TA06573E
  13. T. Lee, M. Gu, and B. S. Kim, "Versatile graphene nanocomposites by layer-by-layer assembly for electroactive materials", Polym Sci. Tech., 24, 512 (2013).
  14. S. B., Kwon, J. S. Lee, S. J. Kwon, S. T. Yun, S. H. Lee, and J. H. Lee, "Molecular layer-by-layer assembled forward osmosis membranes", J. Membr. Sci., 488, 111 (2015). https://doi.org/10.1016/j.memsci.2015.04.015
  15. D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, "Forward osmosis: Where are we now?", Desalination, 356, 271 (2015).
  16. E. T. Yang, C. M. Kim, J. H. Song, H. G. Ki, M. H. Ham, and I. S. Kim, "Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine", Carbon, 117, 293 (2017). https://doi.org/10.1016/j.carbon.2017.03.005
  17. H. Liu, H. Wang, and X. Zhang, "Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification", Adv. Mater., 27, 249 (2015).
  18. D. Grosso, "How to exploit the full potential of the dip-coating process to better control film formation", J. Mater. Chem., 21, 17033 (2011). https://doi.org/10.1039/c1jm12837j