DOI QR코드

DOI QR Code

Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004~2016)

이어도 해양과학기지 관측 파고와 인공위성 관측 유의파고 차이의 특성 연구 (2004~2016)

  • WOO, HYE-JIN (Department of Science Education, Seoul National University) ;
  • PARK, KYUNG-AE (Department of Earth Science Education, Seoul National University) ;
  • BYUN, DO-SEONG (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • LEE, JOOYOUNG (Ocean Research Division, Korea Hydrographic and Oceanographic Agency) ;
  • LEE, EUNIL (Ocean Research Division, Korea Hydrographic and Oceanographic Agency)
  • 우혜진 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과) ;
  • 변도성 (국립해양조사원 해양과학조사연구실) ;
  • 이주영 (국립해양조사원 해양과학조사연구실) ;
  • 이은일 (국립해양조사원 해양과학조사연구실)
  • Received : 2017.10.24
  • Accepted : 2017.12.28
  • Published : 2018.02.28

Abstract

In order to compare significant wave height (SWH) data from multi-satellites (GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) and SWH measurements from Ieodo Ocean Research Station (IORS), we constructed a 12 year matchup database between satellite and IORS measurements from December 2004 to May 2016. The satellite SWH showed a root mean square error (RMSE) of about 0.34 m and a positive bias of 0.17 m with respect to the IORS wave height. The satellite data and IORS wave height data did not show any specific seasonal variations or interannual variability, which confirmed the consistency of satellite data. The effect of the wind field on the difference of the SWH data between satellite and IORS was investigated. As a result, a similar result was observed in which a positive biases of about 0.17 m occurred on all satellites. In order to understand the effects of topography and the influence of the construction structures of IORS on the SWH differences, we investigated the directional dependency of differences of wave height, however, no statistically significant characteristics of the differences were revealed. As a result of analyzing the characteristics of the error as a function of the distance between the satellite and the IORS, the biases are almost constant about 0.14 m regardless of the distance. By contrast, the amplitude of the SWH differences, the maximum value minus the minimum value at a given distance range, was found to increase linearly as the distance was increased. On the other hand, as a result of the accuracy evaluation of the satellite SWH from the Donghae marine meteorological buoy of Korea Meteorological Administration, the satellite SWH presented a relatively small RMSE of about 0.27 m and no specific characteristics of bias such as the validation results at IORS. In this paper, we propose a conversion formula to correct the significant wave data of IORS with the satellite SWH data. In addition, this study emphasizes that the reliability of data should be prioritized to be extensively utilized and presents specific methods and strategies in order to upgrade the IORS as an international world-wide marine observation site.

이어도 해양과학기지 유의파고 자료와 인공위성(GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) 고도계 유의파고 자료를 비교하기 위하여 2004년 12월부터 2016년 5월까지 약 12년 동안의 위성-이어도 관측 유의파고 사이의 일치점 데이터베이스를 생산하였다. 위성 유의파고는 이어도 해양과학기지 유의파고에 대하여 약 0.34 m의 평균 제곱근 오차와 0.17 m의 양의 편차를 나타내었다. 위성과 이어도 관측 유의파고 차는 특이한 계절변동이나 경년변동을 보이지 않고 위성이 중복 관측하는 기간에 대해서 유사한 변동 특성을 보여 위성 자료의 일관성을 확인할 수 있었다. 위성-이어도 유의파고 차이에 대한 바람장의 영향을 조사한 결과 모든 위성에 대해 평균적으로 0.17 m 정도의 양의 편차가 나타났다. 지형 및 해양과학기지 구조물의 영향을 파악하기 위하여 파향에 대한 파고 오차의 특이성을 분석하였으나 통계적으로 유의미한 특성이 나타나지 않았다. 위성-이어도 일치점의 거리에 따른 영향을 조사하기 위하여 위성-이어도 간의 거리에 대한 함수로 오차의 특성을 분석한 결과 평균은 거리와 무관하게 0.14 m로 거의 일정하게 유지되는 반면에 오차의 최댓값과 최솟값 사이의 진폭은 이어도로부터 멀어질수록 선형적으로 증가하는 특성이 발견되었다. 반면에 동해 해양기상위성부이를 활용한 위성 유의파고 자료의 정확도 평가 결과, 위성-실측 자료 사이의 평균 제곱근 오차는 0.27 m로 상대적으로 작은 오차가 발생하였으며, 이어도 파고 자료와 같이 특이한 오차 특성은 발견되지 않았다. 이어도 파고 관측 기기의 상이성을 고려하여 이 연구에서는 위성 유의파고 자료를 기반으로 이어도 유의파고 자료를 보정하는 식을 제안하였다. 또한 이어도 해양과학기지가 국제적인 해양관측 기지로 격상되기 위해서는 자료의 신뢰도 확보가 우선되어야 함을 강조하고 방법과 전략을 제시하였다.

Keywords

References

  1. Abdalla, S., P.A. Janssen and J.R. Bidlot, 2010. Jason-2 OGDR wind and wave products: Monitoring, validation and assimilation. Mar. Geod., 33: 239-255. https://doi.org/10.1080/01490419.2010.487798
  2. Chen, G., B. Chapron, R. Ezraty and D. Vandemark, 2002. A global view of swell and wind sea climate in the ocean by satellite altimeter and scatterometer. J. Atmos. Ocean. Technol., 19: 1849-1859. https://doi.org/10.1175/1520-0426(2002)019<1849:AGVOSA>2.0.CO;2
  3. Clancy, R.M., J.E. Kaitala and L.F. Zambresky, 1986. The Fleet numerical oceanography center global spectral ocean wave model, Bull. Am. Meteorol. Soc., 67: 498-512. https://doi.org/10.1175/1520-0477(1986)067<0498:TFNOCG>2.0.CO;2
  4. Dobson, F. and E. Dunlap, 1999. Miros system evaluation during storm wind study II. In: Proceedings of CLIMAR 99 WMO Workshop on Advances in Marine Climatology, Vancouver, pp. 98-109.
  5. Durrant, T.H., D.J.M. Greenslade and I. Simmonds, 2009. Validation of Jason-1 and Envisat remotely sensed wave heights. J. Atmos. Oceanic Technol., 26: 123-134. https://doi.org/10.1175/2008JTECHO598.1
  6. Ebuchi, N. and H. Kawamura, 1994. Validation of wind speeds and significant wave heights observed by the TOPEX altimeter around Japan. J. Oceanogr., 50: 479-487. https://doi.org/10.1007/BF02234969
  7. Gower, J.F.R., 1996. Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada. J. Geophys. Res., 101: 3817-3829. https://doi.org/10.1029/95JC03281
  8. Holland, P.W. and R.E. Welsch, 1977. Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods, 6: 813-827. https://doi.org/10.1080/03610927708827533
  9. Hwang, P.A., W.J. Teague, G.A. Jacobs and D.W. Wang, 1998. A statistical comparison of wind speed, wave height and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res., 103: 10451-10468. https://doi.org/10.1029/98JC00197
  10. Intergovernmental Oceanographic Commission, 1990. GTSPP real-time quality control manual. IOC Manual and Guides 22, 128 pp.
  11. Intergovernmental Oceanographic Commission, 1993. Manual of quality control procedures for validation of oceanographic data. IOC Manual and Guides 26, 437 pp.
  12. Izaguirre, C., F.J. Mendez, M. Menendez and I.J. Losada, 2011. Global extreme wave height variability based on satellite data. Geophys. Res. Lett., 38: L10607. doi:10.1029/2011GL047302.
  13. Janssen, P.A.E.M., G.J. Komen and W.J.P. de Voogt, 1984. An operational coupled hybrid wave prediction model, J. Geophys. Res., 89: 3635-3654. https://doi.org/10.1029/JC089iC03p03635
  14. Kim, T., 2012. Examination of altimeter wave data in the sea around Ieodo ocean research station. Korean J. Remote Sens., 28: 95-100. https://doi.org/10.7780/kjrs.2012.28.1.095
  15. KMA, 2005. Analysis of wind and wave height using data observed at the complex of oceanic meteorological observation in the Yellow Sea. KMA research report, 89 pp (in Korean with English abstract).
  16. Magnusson, A.K. and O. Gronlie, 2005. Measuring and analysing the directional spectrum of ocean waves. edited by Hauser, D., K. Kahma and H.E. Korgstad, COST Action 714, Office for Official Publications of the European Communities, pp. 138-141.
  17. Magnusson, A.K., 1987. Wave model results with wind input from a course-and a fine-meshed atmospheric model, compared with wave measurements. In: Proceedings of an International Conference, Society of Underwater Technology, London, pp. 165-180.
  18. Melville, W.K., 1996. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech., 28: 279-321. https://doi.org/10.1146/annurev.fl.28.010196.001431
  19. MIROS, 2011, Waveradar system user manual.
  20. Moon, I.J., J.S. Shim, D.Y. Lee, J.H. Lee, I.K. Min and K.C. Lim, 2010. Typhoon researches using the Ieodo Ocean Research Station: Part I. importance and present status of typhoon observation. Atmos., 20: 247-260 (in Korean with English abstract).
  21. National Data Buoy Center, 2003. Handbook of automated data quality control checks and procedures of the National Data Buoy Center. NOAA National Data Buoy Center Technical Document 03-02, 46 pp.
  22. O'Leary, D.P., 1990. Robust regression computation using iteratively reweighted least squares. SIAM J. Matrix Anal. Appl., 11: 466-480. https://doi.org/10.1137/0611032
  23. Oh, K.H., Y.G. Park, D.I. Lim, H.S. Jung and J.S. Shim, 2006. Characteristics of temperature and salinity observed at the Ioedo Ocean Research Station. J. Korea Soc. Mar. Environ. Eng., 9: 225-234 (in Korean with English abstract).
  24. Oh, S.H., W.M. Jeong, D.Y. Lee and S.I. Kim, 2010. Analysis of the reason for occurrence of large-height swell-like waves in the east coast of Korea. J. of Korean Soc. of Coast. Ocean Eng., 22: 101-111 (in Korean with English abstract).
  25. Park, K.A., H.J. Woo, E.Y. Lee, S. Hong and K.L. Kim, 2013. Validation of significant wave height from satellite altimeter in the seas around Korea and error characteristics. Korean J. Remote Sens. 29: 631-644. https://doi.org/10.7780/kjrs.2013.29.6.6
  26. Queffeulou, P. and D. Croize-Fillon, 2016. Global altimeter SWH data set - September 2016, IFREMER, Plouzane, Technical Report, 10 pp.
  27. Queffeulou, P., 2004. Long-term validation of wave height measurements from altimeters. Mar. Geod., 27: 495-510. https://doi.org/10.1080/01490410490883478
  28. Queffeulou, P., 2013. Cryosat-2 IGDR SWH assessment update. IFREMER, Technical Report, 12 pp.
  29. Sepulveda, H.H., P. Queffeulou and F. Ardhuin, 2015. Assessment of SARAL/AltiKa wave height measurements relative to buoy, Jason-2, and Cryosat-2 data. Mar. Geod., 38: 449-465. https://doi.org/10.1080/01490419.2014.1000470
  30. Tanaka, K., 2010. Atmospheric pressure-wave bands around a cold front resulted in a meteotsunami in the East China Sea in February 2009. Nat. Hazards Earth Syst. Sci., 10: 2599-2610. https://doi.org/10.5194/nhess-10-2599-2010
  31. Taylor, P.K., E. Dunlap, F.W. Dobson, R.J. Anderson and V.R. Swail, 2002. On the accuracy of wind and wave measurements from buoys. DBCP Technical Document No. 21, 15 pp.
  32. Woo, H.J. and K.A. Park, 2017. Long-term trend of satellite-observed significant wave height and impact on ecosystem in the East/Japan Sea. Deep Sea Res. Part II Top. Stud. Oceanogr., 143: 1-14. https://doi.org/10.1016/j.dsr2.2016.09.003
  33. You, S.H. and J.S. Park, 2010. Research on wind waves characteristics by comparison of regional wind wave prediction system and ocean buoy data. J. Ocean Eng. Tech., 24: 7-15 (in Korean with English abstract).
  34. Young, I.R., J. Vinoth, S Zieger and A.V. Babanin, 2012. Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res., 117: C00J06, doi:10.1029/2011JC007753.
  35. Young, I.R., S. Zieger and A.V. Babanin, 2011. Global trends in wind speed and wave height. Science, 332: 451-455. https://doi.org/10.1126/science.1197219
  36. Zieger, S., J. Vinoth and I.R. Young, 2009. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. J. Atmos. Ocean. Technol., 26: 2549-2564. https://doi.org/10.1175/2009JTECHA1303.1

Cited by

  1. 이어도 해양과학기지 자료를 활용한 SMAP 인공위성 염분 검증 vol.41, pp.5, 2018, https://doi.org/10.5467/jkess.2020.41.5.469