DOI QR코드

DOI QR Code

신장의 개인차로 인한 서로 다른 눈높이에서 경험된 시각장면의 감각적 특성

Sensory Properties of Visual Scenes Experienced from Different Eye-Heights Arising from Individual Differences in Body-Heights

  • Kim, Daegyu (Department of Psychology, Chung-Ang University) ;
  • Hyun, Joo-Seok (Department of Psychology, Chung-Ang University)
  • 투고 : 2018.07.02
  • 심사 : 2018.11.20
  • 발행 : 2018.11.28

초록

개인의 신장 차이로 인한 눈높이 차이는 동일 시각장면에 대한 상이한 감각적 경험을 초래해, 장기적으로는 심리사회적, 발달적 개인차로 이어질 가능성이 있다. 이러한 가능성을 토대로 본 연구는, 동일 피사체를 대상으로 서로 다른 두 높이의 카메라 즉 상이한 눈높이에서 촬영된 두 정지 영상의 감각적 특성을 서로 비교하였다. 분석 대상이 된 두 영상은 보행자의 신체 부위 서로 다른 높이에 부착된 두 액션 카메라를 통해 병렬 촬영된 정지화면 사진이었다. 두 카메라 높이조건에서 추출된 사진들을 분석한 결과, 전반적 현출성과 시각적 복잡성 수준 모두가 높이가 낮은 조건보다 높은 조건의 사진들에서 상대적으로 높았다. 이 결과는 서로 다른 눈높이에서 경험된 시각장면에 감각적 특성 차이가 있을 가능성과 함께, 신장이 큰 개인의 경우 작은 개인에 비해 상대적으로 풍부하고 다양한 시각 단서들을 경험할 가능성을 시사한다.

Different eye-heights due to individuals' body heights may cause different sensory experiences against the same visual scene, eventually leading to their longer-term psycho-social and developmental individual differences. Accordingly, the present study compared sensory properties of photographs for the same scene taken from two different camera-heights (i.e., eye-heights). Two sets of photographs were taken in parallel from two cameras attached to a different height on the same pedestrian's body. Analysis of the photographs revealed that both the levels of visual saliency and complexity were greater for the photographs taken from the high eye-height than those from the low eye-height. The results indicate a possible difference in sensory properties of visual scenes perceived from two different heights, potentially exposing taller individuals to richer and more diverse sensory experiences than shorter individuals.

키워드

OHHGBW_2018_v9n11_217_f0001.png 이미지

Fig. 1. Locations of the two action cameras attached to pedestrian’s body

OHHGBW_2018_v9n11_217_f0002.png 이미지

Fig. 2. The results of (A) mean Pix, (B), mean FFT, (C) s.d. Pix, and (D) s.d. FFT measurements. The numbers on x-axis represent each sampled photograph (380 in total per condition), and the numbers on y-axis represent the calculated values. Each filled circle represents the value calculated from each photograph in the high eye-height condition, and each open circle represents the value from each photograph in the low eye-height condition. Note that the solid line marked by a filled triangle to the right side of each chart represents the mean of all calculated values in the high eye-height condition, and the broken line marked by an open triangle represents their mean in the low eye-height condition.

Table 1. The results of correlational analyses for differences between high and low eye-height photographs per each mean Pix, s.d. Pix, mean FFT, and s.d. FFT values. Note that H represents high eye-height while L represents low eye-height condition.

OHHGBW_2018_v9n11_217_t0001.png 이미지

참고문헌

  1. Size Korea. (2004). The 5th Korean Human Body Survey Project Report (2nd year final report). Seoul: Eromonomics Society of Korea.
  2. K. S. Kretch, J. M. Franchak, & K. E. Adolph. (2014). Crawling and walking infants see the world differently. Child Development, 85(4), 1503-1518. https://doi.org/10.1111/cdev.12206
  3. M. W. Clearfield, C. N. Osborne, & M. Mullen. (2008). Learning by looking: Infants' social looking behavior across the transition from crawling to walking. Journal of Experimental Child Psychology, 100, 297-307. https://doi.org/10.1016/j.jecp.2008.03.005
  4. T. L. Ooi, & Z. J. He. (2007). A distance judgment function based on space perception mechanisms: Revisiting Glinsky's (1951) equation. Psychological Review, 114(2), 441-454. https://doi.org/10.1037/0033-295X.114.2.441
  5. B. Bridgeman, & I. Cook. (2015). Effect of eye height on estimated slopes of hills. Perception, 44(7), 755-763. https://doi.org/10.1177/0301006615594696
  6. E. Twedt, E. Crawford, & D. R. Proffitt. (2012). Memory for target height is scaled to observer height. Memory & Cognition, 40, 339-351. https://doi.org/10.3758/s13421-011-0166-0
  7. D. Kim, W. Kim, & Y. Kim. (2013). The Development of method for cognitive agility of elementary sports gifted student. The Journal of Digital Policy & Management, 11(6), 299-309.
  8. Y. Taki, H. Hashizume, Y. Sassa, M. Asano, K. Asano, Y. Kotozaki, R. Nouchi, K. Wu, H. Fukuda, & R. Kawashima. (2012). Correlation among body height, intelligence, and brain gray matter volume in healthy children. Neuroimage, 59(2), 1023-1027. https://doi.org/10.1016/j.neuroimage.2011.08.092
  9. J. Wolfe & T. S. Horowitz. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 5(6), 495-501. https://doi.org/10.1038/nrn1411
  10. H. B. Park, J. E. Han, & J. S. Hyun. (2015). You may look unhappy unless you smile: the distinctiveness of a smiling face against faces without an explicit smile. Acta Psychologica, 157, 185-194. https://doi.org/10.1016/j.actpsy.2015.03.003
  11. A. Borji, D. N. Sihite & L. Itti. (2013). Quantitative analysis of human-model agreement in visual saliency modeling: A comparative study. Image Processing, IEEE Transactions, 22(1), 55-69. https://doi.org/10.1109/TIP.2012.2210727
  12. A. Cavalcante, A. Mansouri, L. Kacha, A. K. Barros, Y. Takeuchi, N. Matsumoto, & N. Ohnishi. (2014). Measuring streetscape complexity based on the statistics of local contrast and spatial frequency. PLOS ONE, 9(2), e87097. https://doi.org/10.1371/journal.pone.0087097
  13. R. L. De Valois & K. K. De Valois. (1980). Spatial vision. Annual Review of Psychology, 31, 309-341. https://doi.org/10.1146/annurev.ps.31.020180.001521
  14. W. H. Sheldon & S. S. Stevens. (1942). The Varieties of Temperament; A Psychology of Constitutional Differences. Oxford, England: Harper.
  15. G. Murphy, & J. K. Kovach. (1972). Historical Introduction to Modern Psychology. New York: Harcourt Brace Jovanovich.
  16. J. Atkinson. (2000). The Developing Visual Brain. New York, NY: Oxford University Press.
  17. T. M. Dekker, H. Ban, B. van der Velde, M. I. Sereno, A. E. Welchman, & M. Nardini. (2015). Late development of cue integration is linked to sensory fusion in cortex. Current biology, 25, 2856-2861. https://doi.org/10.1016/j.cub.2015.09.043
  18. J. M. Hunt. (1970). Psychological development: Early experience. Annual Review of Psychology, 30, 103-143.
  19. R. McAllister, & C. Gray. (2007). Low vision: mobility and independence training for the early years child. Early Child Development and Care, 177, 839-852. https://doi.org/10.1080/03004430600594096
  20. S. G. Kim. (2016). Walking accident characteristics and walking factors for road crossing of the transportation vulnerable in the case of Yeosu. The Journal of Digital Policy & Management. 14(6), 439-448.
  21. J. A. Gray. (1981). A Critique of Eysenck's Theory of Personality. In: Eysenck H.J. (eds) A Model for Personality. Berlin, Heidelberg: Springer.
  22. D. Van Kampen. (2009). Personality and Psychopathology: a Theory-Based Revision of Eysenck's PEN Model. Clinical Practice and Epidemiology in Mental Health. 5, 9-21.
  23. L. B. Smith, C. Yu & A. F. Pereira. (2011). Not your mother's view: the dynamics of toddler experience. Developmental Science. 14(1), 9-17. https://doi.org/10.1111/j.1467-7687.2009.00947.x
  24. D. W. Martin. (2007). Doing Psychology Experiments. Belmont, CA: Cengage Learning, Inc.
  25. D. Marr. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, CA: Freeman.
  26. W. H. Warren. (2012). Does this computational theory solve the right problem? Marr, Gibson, and the goal of vision. Perception, 41(9), 1053-1060.