DOI QR코드

DOI QR Code

Properties of Carbon Pastes Prepared with Mixing Ratios of Nano Carbon and Graphite Flakes

  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2018.07.23
  • Accepted : 2018.10.17
  • Published : 2018.11.27

Abstract

To produce carbon electrodes for use in perovskite solar cells, electrode samples are prepared by mixing various weight ratios of 35 nm nano carbon(NC) and $1{\mu}m$ graphite flakes(GF), GF/(NC+GF) = 0, 0.5, 0.7, and 1, in chlorobenzene(CB) solvent with a $ZrO_2$ binder. The carbon electrodes are fabricated as glass/FTO/carbon electrode devices for microstructure characterization using transmission electron microscopy, optical microscopy, and a field emission scanning electron microscopy. The electrical characterization is performed with a four-point probe and a multi tester. The microstructure characterization shows that an electrode with excellent attachment to the substrate and no surface cracks at weight ratios above 0.5. The electrical characterization results show that the sheet resistance is <$70{\Omega}/sq$ and the interface resistance is <$70{\Omega}$ at weight ratios of 0.5 and 0.7. Therefore, a carbon paste electrode with microstructure and electrical properties similar to those of commercial carbon electrodes is proposed with an appropriate mixing ratio of NC and GF containing a CB solvent and $ZrO_2$.

Keywords

References

  1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). https://doi.org/10.1021/ja809598r
  2. Y. X. Zhao, A. M. Nardes and K. Zhu, Appl. Phys. Lett., 104, 213906 (2014). https://doi.org/10.1063/1.4880899
  3. B. He, Q. Tang, T. Liang and Q. Li, J. Mater. Chem. A, 2, 3119 (2014). https://doi.org/10.1039/c3ta14167e
  4. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, J. Phys. Chem. Lett., 5, 3241 (2014). https://doi.org/10.1021/jz5017069
  5. L. Zhang, T. Liu, L. Liu, M. Hu, Y. Yang, A. Mei and H. Han, J. Mater. Chem. A, 3, 1965 (2015).
  6. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang and H. Han, Science, 345, 295 (2014). https://doi.org/10.1126/science.1254763
  7. F. Zhang, X. Yang, H. Wang, M. Wang, M. Cheng, J. Zhao and L. Sun, ACS Appl. Mater. Interfaces, 6, 16140 (2014). https://doi.org/10.1021/am504175x
  8. S. G. Hashmi, D. Martineau, M. I. Dar, Teemu T. T. Myllymaki, T. Srikka, V. Ulla, S. M. Zakeeruddin and M. Gratzel, J. Mater. Chem. A, 5, 12060 (2017). https://doi.org/10.1039/C7TA04132B
  9. B. V. Scarnato, S. Vahidnia, D. T. Richard and T. W. Kirchstetter, Atmos. Chem. Phys., 13, 5089 (2013). https://doi.org/10.5194/acp-13-5089-2013