DOI QR코드

DOI QR Code

Residue Free Fabrication of Suspended 2D Nanosheets for in-situ TEM Nanomechanics

  • Sharbidre, Rakesh Sadanand (Department of Material Science Engineering, Paichai University) ;
  • Byen, Ji Cheol (Department of Material Science Engineering, Paichai University) ;
  • Yun, Gyeong Yeol (Department of Material Science Engineering, Paichai University) ;
  • Ryu, Jae-Kyung (Department of Dental Technology and Science, ShinHan University) ;
  • Lee, Chang Jun (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Hong, Seong-Gu (Division of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Bramhe, Sachin (Department of Material Science Engineering, Paichai University) ;
  • Kim, Taik Nam (Department of Material Science Engineering, Paichai University)
  • Received : 2018.10.16
  • Accepted : 2018.10.31
  • Published : 2018.11.27

Abstract

Two dimensional(2D) crystals, composed of a single layer or a few atomic layers extracted from layered materials are attracting researchers' interest due to promising applications in the nanoelectromechanical systems. Worldwide researchers are preparing devices with suspended 2D materials to study their physical and electrical properties. However, during the fabrication process of 2D flakes on a target substrate, contamination occurs, which makes the measurement data less reliable. We propose a dry transfer method using poly-methyl methacrylate(PMMA) for the 2D flakes to transfer onto the targeted substrate. The PMMA is then removed from the device by an N-Methyl-2-pyrrolidone solution and a critical point dryer, which makes the suspended 2D flakes residue free. Our method provides a clean, reliable and controllable way of fabricating micrometer-sized suspended 2D nanosheets.

Keywords

References

  1. M. C. Hersam and B. J. LeRoy, APL Mater., 2, 092201 (2014). https://doi.org/10.1063/1.4893496
  2. S. Das, J. A. Robinson, M. Dubey, H. Terrones, and M. Terrones, Annu. Rev. Mater. Res., 45, 1 (2015). https://doi.org/10.1146/annurev-matsci-070214-021034
  3. A. K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  4. A. K. Geim, Science, 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  5. F. Xia, D. B. Farmer, Y. Lin and P. Avouris, Nano Lett., 10, 715 (2010). https://doi.org/10.1021/nl9039636
  6. M. Chen, R.C. Haddon, R. Yan, and E. Bekyarova, Mater. Horiz., 4, 1054 (2017). https://doi.org/10.1039/C7MH00485K
  7. A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L Colombo, A. Fert, M. G.-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J.-H. Ahn, J. M. Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. D. Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwanderaq, and J. Kinaretba, Nanoscale, 7, 4598 (2015). https://doi.org/10.1039/C4NR01600A
  8. J. H. Lee, D. W. Jang, S. G. Hong, B. C. Park, J. H. Kim, H. J. Jung, and S. B. Lee, Carbon, 118, 475 (2017). https://doi.org/10.1016/j.carbon.2017.03.081
  9. S. Wagner, C. Weisenstein, S. Kataria, and M. C. Lemme, in Proceedings of Micro and Nano Engineering At The Hague, 45, 57076 (2015).
  10. Z. Moktadir, Graphene, 2, 341 (2014).
  11. T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, J. H. Lee, Biosens. Bioelectron., 26, 4637 (2011). https://doi.org/10.1016/j.bios.2011.05.039
  12. M. Pumera, Mater. Today, 14, 308 (2011). https://doi.org/10.1016/S1369-7021(11)70160-2
  13. T. Mahmoudi, Y. Wang, and Y. B. Hahn, Nano Energy, 47, 51 (2018). https://doi.org/10.1016/j.nanoen.2018.02.047
  14. Z. H. Khan, A. R. Kermany, A. Ochsner and F. Iacopi, J. Physics D: App. Phys., 50, 053003 (2017). https://doi.org/10.1088/1361-6463/50/5/053003
  15. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger. P. Kim, and A. K. Geim, Science, 315, 1379 (2007). https://doi.org/10.1126/science.1137201
  16. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.S. Novoselov and A. K. Geim, Rev. Mod. Phys., 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
  17. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr., S. T. Pantelides, and K. I. Bolotin, Nano Lett., 13, 3626 (2013). https://doi.org/10.1021/nl4014748
  18. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett., 10, 1271 (2010). https://doi.org/10.1021/nl903868w
  19. S. Kim, A. Konar, W. S. Hwang, D. Jena, and W. Cho, Nat. Commun., 3, 1011 (2012). https://doi.org/10.1038/ncomms2018
  20. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol., 6, 147 (2011). https://doi.org/10.1038/nnano.2010.279
  21. I. W. Frank, D. M. Tanenbaum, A. M. van der Zande and P. L. McEuen, J. Vac. Sci. Technol., B: Microelectronics and Nanometer Structures, 25, 2558 (2007). https://doi.org/10.1116/1.2789446
  22. J. Y. Huang, L. Qi, and J. Li, Nano Research, 3, 43 (2010). https://doi.org/10.1007/s12274-010-1006-4
  23. M. Goldsche, G. J. Verbiest, T. Khodkov, J. Sonntag, N. Driesch, D. Buca, and C. Stampfer, Nanotechnology, 29, (2018).
  24. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Adv. Mater., 24, 772 (2012). https://doi.org/10.1002/adma.201103965
  25. J. Brivio, D. T. L. Alexander, and A. Kis, Nano Lett., 11, 5148 (2011). https://doi.org/10.1021/nl2022288
  26. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano, 5, 9703 (2011). https://doi.org/10.1021/nn203879f
  27. B. Jang, A. E. Mag-isa, J. H. Kim, B. W. Kim, H. J. Lee, C. S. Oh, T. Sumigawa, and T. Kitamura, Extreme Mech. Lett., 14, 10 (2017). https://doi.org/10.1016/j.eml.2016.11.001
  28. H. Park, Nanotechnology, 29, 415303 (2018). https://doi.org/10.1088/1361-6528/aad4d9
  29. M. Her, R. Beams, and L. Novotny, Phys. Lett., Section A: General, Atomic and Solid State Physics, 377, 1455 (2013).
  30. C. Androulidakis, K. Zhang, M. Robertson, and S. Tawfick, 2D Materials, 5, 032005 (2018). https://doi.org/10.1088/2053-1583/aac764
  31. Y. Naitou and S. Ogawa, Appl. Phys. Lett., 108, 171605 (2016). https://doi.org/10.1063/1.4948380
  32. G. Nanda, S. Goswami, K. Watanabe, T. Taniguchi, and P. F. A Alkemade, Nano Lett., 15, 4006 (2015). https://doi.org/10.1021/acs.nanolett.5b00939
  33. H. Li, J. Wu, X. Huang, Z. Yin, J. Liu, and H. Zhang, ACS Nano, 8, 6563 (2014). https://doi.org/10.1021/nn501779y
  34. R. Frisenda, E. Navarro-Moratalla, P. Gant, D. P. De Lara, P. Jarillo-Herrero, R. V. Gorbachevc, and A. Castellanos-Gomez, Chem. Soc. Rev., 47, 53 (2018) https://doi.org/10.1039/C7CS00556C
  35. L. Yuan, J. Ge, X. Peng, Q. Zhang, Z. Wu, Y. Jian, X. Xiong, H. Yin, and J. Han, AIP Advances, 6, 125201 (2016). https://doi.org/10.1063/1.4967967
  36. Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H.-J. Gao, and P. Sutter, ACS Nano, 9, 10612 (2015). https://doi.org/10.1021/acsnano.5b04258
  37. R. S. Sharbidre, S. M. Park, C. J. Lee, B. C. Park, S.-G. Hong, S. Bramhe, G. Y. Yun, J.-K. Ryu and T. N. Kim, Korean J. Mater. Res., 27, 705 (2017). https://doi.org/10.3740/MRSK.2017.27.12.705
  38. R. S. Sharbidre, C. J. Lee, S. G. Hong, J. Ryu, and T. N. Kim, Korean J. Mater. Res., 26, 704 (2016). https://doi.org/10.3740/MRSK.2016.26.12.704
  39. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, Nano Lett., 7, 2711 (2007). https://doi.org/10.1021/nl071168m
  40. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Nano lett., 7, 238 (2007). https://doi.org/10.1021/nl061702a
  41. P. Zhang et al., Nat. Commun., 5, 3782 (2014). https://doi.org/10.1038/ncomms4782
  42. B. Jang et al., Nanoscale, 9, 17325 (2017). https://doi.org/10.1039/C7NR04443G
  43. H. Kim, H. Yun, H. A. Yoon, and S. W. Lee, Adv. Energy Mater., 4, 1301973 (2014). https://doi.org/10.1002/aenm.201301973