DOI QR코드

DOI QR Code

Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells

유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석

  • Sung, Hukwang (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Sharma, Monika (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jang, Jeonghee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jung, Namgee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 성후광 (충남대학교 에너지과학기술대학원) ;
  • ;
  • 장정희 (충남대학교 에너지과학기술대학원) ;
  • 정남기 (충남대학교 에너지과학기술대학원)
  • Received : 2018.09.11
  • Accepted : 2018.10.01
  • Published : 2018.11.27

Abstract

In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.

Keywords

References

  1. X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong and Z. Liu, ACS Catal., 5, 4643 (2015). https://doi.org/10.1021/acscatal.5b00524
  2. E. Antolini, Energy Environ. Sci., 2, 915 (2009). https://doi.org/10.1039/b820837a
  3. D. R. Dekel, J. Power Sources, 375, 158 (2018). https://doi.org/10.1016/j.jpowsour.2017.07.117
  4. Z. F. Pan, L. An, T. S. Zhao and Z. K. Tang, Prog. Energy Combust. Sci., 66, 141 (2018). https://doi.org/10.1016/j.pecs.2018.01.001
  5. Z. F. Pan, R. Chen, L. An and Y. S. Li, J. Power Sources, 365, 430 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.013
  6. L. Jiang, A. Hsu, D. Chu and R. Chen, J. Electrochem. Soc., 156, 370 (2009).
  7. M. H. Seo, S. M. Choi, H. J. Kim and W. B. Kim, Electrochem. Commun., 13, 182 (2011). https://doi.org/10.1016/j.elecom.2010.12.008
  8. V. L. Nguyen, D. C. Nguyen, H. Hirata, M. Ohtaki, T. Hayakawa and M. Nogami, Adv. Nat. Sci.: Nanosci. Nanotechnol., 1, 035012 (2010). https://doi.org/10.1088/2043-6262/1/3/035012
  9. A. Chen and C. Ostrom, Chem. Rev., 115, 11999 (2015). https://doi.org/10.1021/acs.chemrev.5b00324
  10. P. M. Uberman, L. A. Perez, S. E. Martin and G. I. Lacconi, RSC Adv., 4, 12330 (2014). https://doi.org/10.1039/c3ra47854h
  11. E. Ramirez, S. Jansat, K. Philippot, P. Lecante, M. Gomez, A.M.M. Bulto and B. Chaudret, J. Organomet. Chem., 689, 4601 (2004). https://doi.org/10.1016/j.jorganchem.2004.09.006
  12. V. P. Ananikov, N. V. Orlov, I. P. Beletskaya, V. N. Khrustalev, M. Y. Antipin and T. V. Timofeeva, J. Am. Chem. Soc., 129, 7252 (2007). https://doi.org/10.1021/ja071727r
  13. J. Cookson, Platin. Met. Rev., 56, 83 (2012). https://doi.org/10.1595/147106712X632415
  14. S. M. I. Morsy, Int. J. Curr. Microbiol. App. Sci., 3, 237 (2014).
  15. C. Tojo, M. Dios and F. Barroso, Materials, 4, 55 (2011).
  16. Y. Song, C. S. S. R. Kumar and J. Hormes, J. Nanosci. Nanotech., 4, 1 (2004). https://doi.org/10.1166/jnn.2004.226
  17. M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. S. Abramchuk, E. E. Makhaeva, A. R. Khokhlov, V. G. Matveeva and M. G. Sulman, Macromolecules, 37, 1787 (2004). https://doi.org/10.1021/ma035163x
  18. R. M. Crooks, M. Zhao, L. Sun, V. Chechik and L. K. Yeung, Acc. Chem. Res., 34, 181 (2001). https://doi.org/10.1021/ar000110a
  19. M. Zhao and R. M. Crooks, Angew. Chem. Int. Ed., 38, 364 (1999). https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3<364::AID-ANIE364>3.0.CO;2-L
  20. E. Karakhanov, A. Maximov, Y. Kardasheva, V. Semernina, A. Zolotukhina, A. Ivanov, G. Abbott, E. Rosenberg and V. Vinokurov, ACS Appl. Mater. Interfaces, 6, 8807 (2014). https://doi.org/10.1021/am501528a
  21. D. J. Gavia and Y. S. Shon, ChemCatChem, 7, 892 (2015). https://doi.org/10.1002/cctc.201402865
  22. G. He, Y. Song, X. Kang and S. Chen, Electrochim. Acta, 94, 98 (2013). https://doi.org/10.1016/j.electacta.2013.01.134
  23. N. Ortiz and S. E. Skrabalak, Langmuir, 30, 6649 (2014). https://doi.org/10.1021/la404539p
  24. A. P. LaGrow, K. R. Knudsen, N. M. AlYami, D. H. Anjum and O. M. Bakr, Chem. Mater., 27, 4134 (2015). https://doi.org/10.1021/acs.chemmater.5b01247
  25. S. Mourdikoudis and L. M. L. Marzan, Chem. Mater., 25, 1465 (2013). https://doi.org/10.1021/cm4000476
  26. B. Hu, K. Ding, T. Wu, X. Zhou, H. Fan, T. Jiang, Q. Wang and B. Han, Chem. Commun., 46, 8552 (2010). https://doi.org/10.1039/c0cc03485a
  27. Z. Yang and K. J. Klabunde, J. Organomet. Chem., 694, 1016 (2009). https://doi.org/10.1016/j.jorganchem.2008.11.030
  28. S. Carenco, C. Boissiere, L. Nicole, C. Sanchez, P. L. Floch and N. Mezailles, Chem. Mater., 22, 1340 (2010). https://doi.org/10.1021/cm902007g
  29. A. P. Lagrow, B. Ingham, M. F. Toney and R. D. Tilley, J. Phys. Chem. C, 117, 16709 (2013). https://doi.org/10.1021/jp405314g
  30. V. Mazumder, M. Chi, M. N. Mankin, Y. Liu, O. Metin, D. Sun, K. L. More and S. Sun, Nano Lett., 12, 1102 (2012). https://doi.org/10.1021/nl2045588
  31. Y. Liu, C. Wang, Y. Wei, L. Zhu, D. Li, J. S. Jiang, N. M. Markovic, V. R. Stamenkovic and S. Sun, Nano Lett., 11, 1614 (2011). https://doi.org/10.1021/nl104548g
  32. S. Yang, J. Dong, Z. Yao, C. Shen, X. Shi, Y. Tian, S. Lin and X. Zhang, Sci. Rep., 4, 4501 (2014).
  33. R. K. Chiang and R. T. Chiang, Inorg. Chem., 46, 369 (2007). https://doi.org/10.1021/ic061846s
  34. J. Singh, N. Kaurav, N. P. Lalla and G. S. Okram, J. Mater. Chem. C, 2, 8918 (2014).
  35. N. Ortiz and S. E. Skrabalak, Angew. Chem. Int. Ed., 51, 11757 (2012). https://doi.org/10.1002/anie.201205956
  36. Y. Ye, J. Chun, S. Park, T. J. Kim, Y. M. Chung, S. H. Oh, I. K. Song and J. Lee, Korean J. Chem. Eng., 29, 1115 (2012). https://doi.org/10.1007/s11814-012-0033-0
  37. D. Li, C. Wang, D. Tripkovic, S. Sun, N. M. Markovic and V. R. Stamenkovic, ACS Catal., 2, 1358 (2012). https://doi.org/10.1021/cs300219j
  38. H. Yano, M. Watanabe, A. Liyama and H. Uchida, Nano Energy, 29, 323 (2016). https://doi.org/10.1016/j.nanoen.2016.02.016
  39. Z. Xu, H. Zhang, H. Zhong, Q. Lu, Y. Wang and D. Su, Appl. Catal. B Environ., 111, 264 (2012).
  40. A. Anastasopoulos, J. C. Davies, L. Hannah, B. E. Hayden, C. E. Lee, C. Milhano, C. Mormiche and L. Offin, ChemSusChem, 6, 1973 (2013). https://doi.org/10.1002/cssc.201300208