DOI QR코드

DOI QR Code

Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions

다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매

  • Jang, Jeonghee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Sharma, Monika (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Sung, Hukwang (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Sunpyo (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Jung, Namgee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 장정희 (충남대학교 에너지과학기술대학원) ;
  • 모니카 샤르마 (충남대학교 에너지과학기술대학원) ;
  • 성후광 (충남대학교 에너지과학기술대학원) ;
  • 김순표 (충남대학교 에너지과학기술대학원) ;
  • 정남기 (충남대학교 에너지과학기술대학원)
  • Received : 2018.09.12
  • Accepted : 2018.10.16
  • Published : 2018.11.27

Abstract

During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.

Keywords

References

  1. V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross and N. M. Markovic, Nat. Mater., 6, 241 (2007). https://doi.org/10.1038/nmat1840
  2. N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo and Y.-E. Sung, Nano Today, 9, 433 (2014). https://doi.org/10.1016/j.nantod.2014.06.006
  3. X. Fu, P. Zamani, J.-Y. Choi, F. M. Hassan, G. Jiang, D. C. Higgins, M. A. Hoque, Y. Zhang and Z. Chen, Adv. Mater., 29, 1604456 (2016).
  4. J. C. Meier, C. Galeano, L. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth and K. J. J. Mayrhofer, Beilstein J. Nanotechnol., 5, 44 (2014) https://doi.org/10.3762/bjnano.5.5
  5. M. Sharma, N. Jung and S. J. Yoo, Chem. Mater., 30, 2 (2018). https://doi.org/10.1021/acs.chemmater.7b03422
  6. N. Jung, Y.-H. Cho, K.-H. Choi, J. W. Lim, Y.-H. Cho, M. Ahn, Y. S. Kang and Y-E. Sung, Electrochem. Commun., 12, 754 (2010). https://doi.org/10.1016/j.elecom.2010.03.025
  7. S. C. Thomas, X. Ren, S. Gottesfeld and P. Zelenay, Electrochim. Acta, 47, 3741 (2002). https://doi.org/10.1016/S0013-4686(02)00344-4
  8. T. Toda, H. Igarashi, H. Uchida and M. Watanabe, J. Electrochem. Soc, 148, 3750 (1999).
  9. M. Chiwata, H. Yano, S. Ogawa, M. Watanabe and A. Iiyama, H. Uchida, Electrochemistry, 83, 133 (2016).
  10. O. T. Holton and J. W. Stevenson, Platinum Metals Rev., 57, 259 (2013). https://doi.org/10.1595/147106713X671222
  11. S. Cherevko, N. Kulyk and K. J. J. Mayrhofer, Nano Energy, 29, 275 (2016). https://doi.org/10.1016/j.nanoen.2016.03.005
  12. I. Takahashi and S. S. Kocha, J. Power Source, 195, 6312 (2010) https://doi.org/10.1016/j.jpowsour.2010.04.052
  13. N. V. Long, Y. Yang, C. M. Thi, N. V. Minh, Y. Cao and M. Nogami, Nano Energy, 2, 636 (2013). https://doi.org/10.1016/j.nanoen.2013.06.001
  14. C. Wang, M. Chi, D. Li, D. Strmcnik, D. V. D. Vliet, G. Wang, V. Komanicky, K.-C. Chang, A. P. Pualikas, D. Tripkovic, J. Pearson, K. L. More, N. M. Markovic and V. R. Stamenkovic, J. Am. Chem. Soc., 133, 14396 (2011). https://doi.org/10.1021/ja2047655
  15. R. Cui, L. Mei, G. Han, J. Chen, G. Zhang, Y. Quan, N. Gu, L. Zhang, Y. Fang, B. Qien, X. Jiang and Z. Han, Sci. Rep., 7, 41826 (2017). https://doi.org/10.1038/srep41826
  16. S. J. Hoseini, M. Bahrami and M. Dehghani, RSC Adv., 4, 13796 (2014). https://doi.org/10.1039/c4ra01625d
  17. Z. Yan, M. Wang, J. Liu, R. Liu and J. Zhao, Electrochim. Acta, 141, 331, (2014). https://doi.org/10.1016/j.electacta.2014.06.137
  18. D. Kaewsai, S. Yeamdee, S. Supajaroon and M. Hunsom, Int. J. Hydrogen Energy, 43, 5133 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.101
  19. R. T. Yang, P. J. Goethel, J. M. Schwartz and C. R. F. Lund, J. Catal, 122, 206 (1990). https://doi.org/10.1016/0021-9517(90)90273-M
  20. A. Moisala, A. G. Nasibulin and E. I. Kauppinen, J. Phys.: Condens. Matter, 15, S3011 (2003). https://doi.org/10.1088/0953-8984/15/42/003
  21. T.-Y Jeon, S. J. Yoo, H.-Y. Park, S.-K. Kim, S. Lim, D. Peck, D.-H. Jung and Y.-E. Sung, Langmuir, 28, 3664 (2012). https://doi.org/10.1021/la2042668
  22. L. Chen, T. Mashimo, C. Iwamoto, H. Okudera, E. Omurzak, H. S. Genapathy, H. Ihara and J. Zhang, Nanotechnology, 24, 045602 (2013). https://doi.org/10.1088/0957-4484/24/4/045602
  23. Y.-F. Han, D. Kumar, C. Sivadinarayana, A. Clearfield and D. W. Goodman, Catal. Lett., 94, 131 (2004). https://doi.org/10.1023/B:CATL.0000020537.33875.46