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멀웨어 검출을 위한 기계학습 알고리즘과 특징 추출에 

대한 성능연구

A Study on Performance of ML Algorithms and Feature Extraction to
detect Malware
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요  약  이 논문에서는 알려지지 않은 PE 파일이 멀웨어의 여부를 분류하는 방법을 연구하였다. 멀웨어 탐지 영역의 

분류 문제에서는 특징 추출과 분류가 중요하다. 위와 같은 목적으로 멀웨어 탐지를 위해 우리는 어떠한 특징들이 분류

기에 적합한지, 어떠한 분류기가 선택된 특징들에 대해 연구하였다. 그래서 우리는 멀웨어 탐지를 위한 기능과 분류기

의 좋은 조합을 찾기 위해 실험하였다. 이를 위해 두 단계로 실험을 실시하였다. 1 단계에서는 Opcode, Windows 

API, Opcode + Windows API의 특징들을 이용하여 정확도를 비교하였다. 여기에서 Opcode + Windows API 특징이 

다른 특징보다 더 좋은 결과를 나타내었다. 2 단계에서는 나이브 베이즈, K-NN, SVM, DT의 분류기들의 AUC 값을 

비교하였다. 그 결과 DT의 분류기가 더 좋은 결과 값을 나타내었다.

Abstract  In this paper, we studied the way that classify whether unknown PE file is malware or not. In the 
classification problem of malware detection domain, feature extraction and classifier are important. For that purpose, 
we studied what the feature is good for classifier and the which classifier is good for the selected feature. So, we 
try to find the good combination of feature and classifier for detecting malware. For it, we did experiments at two 
step. In step one, we compared the accuracy of features using Opcode only, Win. API only, the one with both. 
We founded that the feature, Opcode and Win. API, is better than others. In step two, we compared AUC value of 
classifiers, Bernoulli Naïve Bayes, K-nearest neighbor, Support Vector Machine and Decision Tree. We founded that 
Decision Tree is better than others.
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Ⅰ. Introduction

The term “Malware” stands for malicious software, 

and it usually means the hostile software application. 

The malware can be discriminated by the capability of 

replication, propagation, self-execution and corruption 

of the operating system[1]. According to McAfee's 

latest report, the large number of new samples for the 

malware are being distributed every day[2].

Because of the large number of samples for these 
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new malware, there are many difficulties in detecting 

and analyzing malware. There is a classical and 

popular way to detect malware, which is signature 

based method
[3]. Signature was extracted manually 

from large-scale malware sample data by 

heuristic-based analysis. However, this signature-based 

detection systems have several disadvantages and 

require high maintenance costs to continue signature 

updates.

Also, malware detection methods can be divided by 

Static Analysis and Dynamic Analysis
[4]. Static 

Analysis is the testing and evaluation of an application 

by examining the code without executing the 

application. So in this method, the performance of 

detection depends on feature vectors of files. On the 

other hand, dynamic analysis is the testing and 

evaluation of an application while executing the 

program in the virtual environment. It reveals subtle 

defects or vulnerabilities whose cause is too complex to 

be discovered by static analysis[5].

Recently, many research efforts has been reported 

on data mining techniques[6]. These methods use the 

many kind of feature extraction methods and data 

mining algorithms. In this paper, our purpose is to 

compare performance of classifiers and to analyze the 

correlation between classifiers and features. Therefore, 

we extracted Opcode and Windows API Calls as the 

feature vector. And we apply Naïve Bayes (NB), 

Decision Tree (DT), Support Vector Machine (SVM) 

and K-nearest neighbor (K-NN) algorithms for 

malware detection. Also, to evaluate performance and 

to analyze the correlation, we used Receiver Operating 

Characteristic (ROC) metric and Analysis of Variance 

(ANOVA).

Ⅱ. RELATED WORK

In this paper, we used Static Analysis, that is 

automated-behavior based malware detection using 

machine learning algorithm. The algorithms used 

Bernoulli Naïve Bayes, Decision Tree, Support Vector 

Machine and K-nearest neighbor

1. PE File Format and Feature vectors

The PE (Portable Executable) file format is an 

executable file format such as EXE, DLL, Object code 

used in the Windows operating system. We extracted 

Opcode and Windows API Calls, and them are used 

feature vectors. Opcode is a core part of a machine 

instruction that embodies an operator executed by a 

machine and provides functions of logical operation, 

program flow control, memory processing, and 

arithmetic operation[7]. Windows API Calls stands for 

Application Programming Interface, which means an 

interface created so that it can control functions 

provided by the operating system and programming 

language so that it can be used in applications.

2. Naive Bayes

The Naive Bayes algorithm is based on Bayes' 

theorem[8]. It is as follows.

         (1)

Where conditional probability is posterior 

probability about belong in which classes   when 

feature vector   of data was given. Also,   is 

prior probability,   is probability of class, and 

  is probability of feature vector. It selects the 

class with highest posterior probability, when datasets 

were given. Also, the naive Bayes is that each of 

feature is assumed to be independent of each other to 

obtain posterior probability. Therefore, prior probability 

is simply computed.

In this paper, we used Bernoulli Naive Bayes 

because there are two classes(malware or benign). If 

  be the Boolean expressing the occurrence or 

absence of the ′  term from the feature, then the 

likelihood of a feature vector   given a class   is 

given by
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
 




   

           (2)

Where,   is the probability of class   generating the 

term 
[9].

3. Support Vector Machine

Idea of Support Vector Machine is to obtain 

hyperplane maximizing margin between the classes, 

where hyperplane is expressed as form of 

    . Given feature vector   and   

class vector  , Support Vector Machine require the 

solution of the following optimization problem.

 



 



        (3)

   subject to 
∅ ≥  

    ≥   

Where,   is the variable to allow some degree of 

misclassification,   is a hyperparameter to control it. 

And, ∅  is function mapping the data into a 

higher dimensional space to solve non-linear problem.

From above the problem, using dual problem, we 

can obtain following classification function[10].

4. K-Nearest Neighbor

K-NN is a type of instance-based learning, and it 

doesn’t construct model. but, it stores instances of the 

training data. K-NN Classifier implements learning 

based on nearest K instances from each instance, 

where we used Euclidean metric to compute distance 

between the instances. Learning classify class from a 

simple majority vote of the nearest neighbors of each 

point[11]. Where it is important to select K properly.

5. Decision Tree

Given feature vector   and a class vector  , a 

decision tree recursively partitions the space such that 

the samples with the same labels are grouped together.

Let the data at node  , be represented by  . For 

each candidate split      consisting of a 

feature   and threshold  , partition the data into 

   and     subsets.

The impurity at   is computed using an impurity 

function , the choice of which depends on the task 

being solved
[12].

   


  


     

(4)

Select the parameters that minimizes the impurity 

   

For measures of impurity, Gini and Cross-Entropy are 

used. In this paper, we used following cross-entropy.

  


          (5)

        


  

Where   is the training data in node  , and   

is the proportion of class   observations in node  .

Ⅲ. IMPLEMENTATION OF THE 

PROPOSED SYSTEM

In this paper, we extracted Opcode and Windows 

API Calls from PE file using pefile[13] and capstone[14]. 

And they were used as features. Afterward, machine 

learning algorithms classified from features to whether 

PE files are malware or not. Entire flowchart showed 

in figure 1.

그림 1. 실험순서

Fig. 1. Experimental System
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In this paper, we prepared 1224 files for experiment. 

Among that, the 445 files are benign and extracted 

from the Windows file directory(windows\system32). 

In that directory, we exclude the files with non-PE file 

format. We crawled 779 malware files from the Web 

sites of "Virusshare
[15]" and "malwareurls. joxeankoret[16]", 

"malc0de[17]", "malwareblacklist[18]" and used it for 

learning. We extracted malware consists of Trojan 418, 

PUP 176, Virus 58, Backdoor 34, Adware 29, 

Downloader 21, Spyware 13, and so on.

To test classifiers, we used scikit-learn library of 

python. In the case of Bernoulli NB, we set value of 

alpha to 0.5, where the alpha is hyperparameter used in 

smoothing of maximum likelihood. In the case of 

K-NN, because performance is highest when k is 8 of 

0-10, we used the number. In the case of SVM, kernel 

used Radial Basis Function(RBF). 

To evaluation performance of classifier, we obtained 

accuracy, true positive rate and false positive rate. 

Also, ROC curve and ANOVA are used.

Ⅳ. EXPERIMENT AND RESULT

In the paper, we split dataset into training data and 

test data, where their rate is 70% and 30%. Also, as a 

result of feature extraction, the number of unique terms 

extracted from Opcode is 346, the one extracted from 

windows API Calls is 693, and the one extracted from 

both Opcode and Windows API Calls is 1038. In the 

process of feature extraction, we extracted features 

(bag of words) as Boolean vector, where Boolean 

means whether there is each term or not. It was used 

instead of term frequency. For example, ‘move’ was 

extracted from Opcode of PE file 3 times. In the 

Boolean vector, position of ‘move’ is 1 or TRUE.

To find the good combination of feature and 

classifier for detecting malware, we did the experiment 

as two steps. At the first step, we try to find what the 

feature is good for classifier. In the next step, we try 

to find the which classifier is good for the selected 

feature. We did the first step through 30 times trial to 

increase confidence of experimental result, and 

calculated the average and variance of accuracy. It is 

showed in Figure 2 (The exact values were shown in 

Table 1). From it, you can see that the feature, Opcode 

and Win. API, is better than others because of high 

accuracy and small variance between classifiers. It 

means that the features is robust for classifiers. Then 

we proceeded the step two with Opcode and Win. API 

feature.

그림 2. 각 특징들의 분류기 정확도 비교

Fig. 2. Accuracy comparison of classifier for each 

features

In the Step two, we have to find the adequate 

classifier for that feature. One way to compare 

classifier is to measure the area under the curve(AUC) 

that is ROC. The Receiver Operating Characteristic 

(ROC) curve plot true positive rate(TPR) on the Y axis, 

and false positive rate(FPR) on the X axis, where TPR 

is probability of correctly identified malware. Also, FPR 

is probability of wrongly identified benign, when a 

detector identifies benign as a malware. The motivation 

of ROC curve means that the top left corner of the plot 

is the “ideal” point. However, it is not very realistic, but 

it does mean that a larger area under the curve (AUC) 

is usually better[19]. 

The result of second step is shown in Figure 3 (a), 

where Decision Tree is better than others. In addition, 

the ROC curve for other features also were showed in 

(b) and (c). As summary for experiments, Table 1 

showed AUC, mean accuracy and standard deviation 

within classifier.
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   (a)                          (b)

(c)

그림 3. 분류기에 따른 ROC 곡선

Fig. 3. ROC curve by Classifier

표 1. 분류 결과

Table 1. Result of Classification

Feature 

Extraction

Opcode and 

Win. API

Opcode Win. API

AUC ACC SD AUC ACC SD AUCACC SD

Bernoulli NB 0.87 0.88 0.0130 0.86 0.84 0.0142 0.90 0.93 0.0105

K-NN

 (K=8)
0.93 0.95 0.0116 0.93 0.95 0.0079 0.89 0.90 0.0923

SVM 0.90 0.93 0.0103 0.90 0.93 0.0101 0.68 0.78 0.0213

Decision Tree 0.95 0.96 0.0106 0.92 0.95 0.0106 0.90 0.93 0.0114

As a result of classification, In the Bernoulli Naïve 

Bayes, when only using windows API Calls, the 

accuracy and AUC of the malware detection rate was 

the highest. However, in the Decision Tree and SVM, 

the method using Opcode and Win. API showed the 

highest value of 0.96 and 0.95. Also, When using the 

decision tree and Opcode and Win. API, the accuracy 

was the highest at 0.96, AUC was also the highest at 

0.95.

Ⅴ. CONCLUSION

In this paper, we addressed way that classify 

whether unknown PE file is malware or not. In the 

classification problem of malware detection domain, 

feature extraction and classifier are important. For that 

purpose, we studied what the feature is good for 

classifier and the which classifier is good for the 

selected feature. In other word, we found the good 

combination of feature and classifier for detecting 

malware. Thus, we did experiments at two step. 

In step one, we showed that the feature, Opcode and 

Win. API, is better than others[20]. Then, in step two, 

we also showed that way using the feature and 

Decision Tree is better than others. This results were 

shown through accuracy and variance of classifier and 

AUC of ROC curve.
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