
The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 18, No. 1, pp.211-216, Feb. 28, 2018. pISSN 2289-0238, eISSN 2289-0246

- 211 -

https://doi.org/10.7236/JIIBC.2018.18.1.211

JIIBC 2018-1-28

멀웨어 검출을 위한 기계학습 알고리즘과 특징 추출에

대한 성능연구

A Study on Performance of ML Algorithms and Feature Extraction to
detect Malware

안태현*, 박재균*, 권영만**

Tae-Hyun Ahn*, Jae-Gyun Park*, Young-Man Kwon**

요 약 이 논문에서는 알려지지 않은 PE 파일이 멀웨어의 여부를 분류하는 방법을 연구하였다. 멀웨어 탐지 영역의

분류 문제에서는 특징 추출과 분류가 중요하다. 위와 같은 목적으로 멀웨어 탐지를 위해 우리는 어떠한 특징들이 분류

기에 적합한지, 어떠한 분류기가 선택된 특징들에 대해 연구하였다. 그래서 우리는 멀웨어 탐지를 위한 기능과 분류기

의 좋은 조합을 찾기 위해 실험하였다. 이를 위해 두 단계로 실험을 실시하였다. 1 단계에서는 Opcode, Windows

API, Opcode + Windows API의 특징들을 이용하여 정확도를 비교하였다. 여기에서 Opcode + Windows API 특징이

다른 특징보다 더 좋은 결과를 나타내었다. 2 단계에서는 나이브 베이즈, K-NN, SVM, DT의 분류기들의 AUC 값을

비교하였다. 그 결과 DT의 분류기가 더 좋은 결과 값을 나타내었다.

Abstract In this paper, we studied the way that classify whether unknown PE file is malware or not. In the
classification problem of malware detection domain, feature extraction and classifier are important. For that purpose,
we studied what the feature is good for classifier and the which classifier is good for the selected feature. So, we
try to find the good combination of feature and classifier for detecting malware. For it, we did experiments at two
step. In step one, we compared the accuracy of features using Opcode only, Win. API only, the one with both.
We founded that the feature, Opcode and Win. API, is better than others. In step two, we compared AUC value of
classifiers, Bernoulli Naïve Bayes, K-nearest neighbor, Support Vector Machine and Decision Tree. We founded that
Decision Tree is better than others.

Key Words : Malware, PE File Format, Opcode, Windows API Calls, Machine Learning, Bernoulli Naïve Bayes,
Decision Tree, Support Vector Machine, K-nearest neighbor

*준회원, 을지대학교 의료IT학과
*종신회원, 을지대학교 의료IT학과(교신저자)
접수일자 : 2017년 12월 29일, 수정완료 : 2018년 1월 29일
게재확정일자 : 2018년 2월 9일

Received: 29 December, 2017 / Revised: 29 January, 2018 /
Accepted: 9 February, 2018
**Corresponding Author: ymkwon@eulji.ac.kr
Dept. of Medical IT, Eulji University, Korea

Ⅰ. Introduction

The term “Malware” stands for malicious software,

and it usually means the hostile software application.

The malware can be discriminated by the capability of

replication, propagation, self-execution and corruption

of the operating system[1]. According to McAfee's

latest report, the large number of new samples for the

malware are being distributed every day[2].

Because of the large number of samples for these

A Study on Performance of ML Algorithms and Feature Extraction to detect Malware

- 212 -

new malware, there are many difficulties in detecting

and analyzing malware. There is a classical and

popular way to detect malware, which is signature

based method
[3]. Signature was extracted manually

from large-scale malware sample data by

heuristic-based analysis. However, this signature-based

detection systems have several disadvantages and

require high maintenance costs to continue signature

updates.

Also, malware detection methods can be divided by

Static Analysis and Dynamic Analysis
[4]. Static

Analysis is the testing and evaluation of an application

by examining the code without executing the

application. So in this method, the performance of

detection depends on feature vectors of files. On the

other hand, dynamic analysis is the testing and

evaluation of an application while executing the

program in the virtual environment. It reveals subtle

defects or vulnerabilities whose cause is too complex to

be discovered by static analysis[5].

Recently, many research efforts has been reported

on data mining techniques[6]. These methods use the

many kind of feature extraction methods and data

mining algorithms. In this paper, our purpose is to

compare performance of classifiers and to analyze the

correlation between classifiers and features. Therefore,

we extracted Opcode and Windows API Calls as the

feature vector. And we apply Naïve Bayes (NB),

Decision Tree (DT), Support Vector Machine (SVM)

and K-nearest neighbor (K-NN) algorithms for

malware detection. Also, to evaluate performance and

to analyze the correlation, we used Receiver Operating

Characteristic (ROC) metric and Analysis of Variance

(ANOVA).

Ⅱ. RELATED WORK

In this paper, we used Static Analysis, that is

automated-behavior based malware detection using

machine learning algorithm. The algorithms used

Bernoulli Naïve Bayes, Decision Tree, Support Vector

Machine and K-nearest neighbor

1. PE File Format and Feature vectors

The PE (Portable Executable) file format is an

executable file format such as EXE, DLL, Object code

used in the Windows operating system. We extracted

Opcode and Windows API Calls, and them are used

feature vectors. Opcode is a core part of a machine

instruction that embodies an operator executed by a

machine and provides functions of logical operation,

program flow control, memory processing, and

arithmetic operation[7]. Windows API Calls stands for

Application Programming Interface, which means an

interface created so that it can control functions

provided by the operating system and programming

language so that it can be used in applications.

2. Naive Bayes

The Naive Bayes algorithm is based on Bayes'

theorem[8]. It is as follows.

   (1)

Where conditional probability is posterior

probability about belong in which classes  when

feature vector  of data was given. Also,  is

prior probability,  is probability of class, and

 is probability of feature vector. It selects the

class with highest posterior probability, when datasets

were given. Also, the naive Bayes is that each of

feature is assumed to be independent of each other to

obtain posterior probability. Therefore, prior probability

is simply computed.

In this paper, we used Bernoulli Naive Bayes

because there are two classes(malware or benign). If

 be the Boolean expressing the occurrence or

absence of the ′ term from the feature, then the

likelihood of a feature vector  given a class  is

given by

The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 18, No. 1, pp.211-216, Feb. 28, 2018. pISSN 2289-0238, eISSN 2289-0246

- 213 -


 




   

   (2)

Where,  is the probability of class  generating the

term 
[9].

3. Support Vector Machine

Idea of Support Vector Machine is to obtain

hyperplane maximizing margin between the classes,

where hyperplane is expressed as form of

    . Given feature vector  and 

class vector  , Support Vector Machine require the

solution of the following optimization problem.

 



 



 (3)

 subject to 
∅ ≥  

  ≥   

Where,  is the variable to allow some degree of

misclassification,  is a hyperparameter to control it.

And, ∅ is function mapping the data into a

higher dimensional space to solve non-linear problem.

From above the problem, using dual problem, we

can obtain following classification function[10].

4. K-Nearest Neighbor

K-NN is a type of instance-based learning, and it

doesn’t construct model. but, it stores instances of the

training data. K-NN Classifier implements learning

based on nearest K instances from each instance,

where we used Euclidean metric to compute distance

between the instances. Learning classify class from a

simple majority vote of the nearest neighbors of each

point[11]. Where it is important to select K properly.

5. Decision Tree

Given feature vector  and a class vector  , a

decision tree recursively partitions the space such that

the samples with the same labels are grouped together.

Let the data at node  , be represented by  . For

each candidate split     consisting of a

feature  and threshold  , partition the data into

  and    subsets.

The impurity at  is computed using an impurity

function , the choice of which depends on the task

being solved
[12].

   


  


   

(4)

Select the parameters that minimizes the impurity

   

For measures of impurity, Gini and Cross-Entropy are

used. In this paper, we used following cross-entropy.

  


 (5)

   


  

Where  is the training data in node  , and 

is the proportion of class  observations in node  .

Ⅲ. IMPLEMENTATION OF THE

PROPOSED SYSTEM

In this paper, we extracted Opcode and Windows

API Calls from PE file using pefile[13] and capstone[14].

And they were used as features. Afterward, machine

learning algorithms classified from features to whether

PE files are malware or not. Entire flowchart showed

in figure 1.

그림 1. 실험순서

Fig. 1. Experimental System

A Study on Performance of ML Algorithms and Feature Extraction to detect Malware

- 214 -

In this paper, we prepared 1224 files for experiment.

Among that, the 445 files are benign and extracted

from the Windows file directory(windows\system32).

In that directory, we exclude the files with non-PE file

format. We crawled 779 malware files from the Web

sites of "Virusshare
[15]" and "malwareurls. joxeankoret[16]",

"malc0de[17]", "malwareblacklist[18]" and used it for

learning. We extracted malware consists of Trojan 418,

PUP 176, Virus 58, Backdoor 34, Adware 29,

Downloader 21, Spyware 13, and so on.

To test classifiers, we used scikit-learn library of

python. In the case of Bernoulli NB, we set value of

alpha to 0.5, where the alpha is hyperparameter used in

smoothing of maximum likelihood. In the case of

K-NN, because performance is highest when k is 8 of

0-10, we used the number. In the case of SVM, kernel

used Radial Basis Function(RBF).

To evaluation performance of classifier, we obtained

accuracy, true positive rate and false positive rate.

Also, ROC curve and ANOVA are used.

Ⅳ. EXPERIMENT AND RESULT

In the paper, we split dataset into training data and

test data, where their rate is 70% and 30%. Also, as a

result of feature extraction, the number of unique terms

extracted from Opcode is 346, the one extracted from

windows API Calls is 693, and the one extracted from

both Opcode and Windows API Calls is 1038. In the

process of feature extraction, we extracted features

(bag of words) as Boolean vector, where Boolean

means whether there is each term or not. It was used

instead of term frequency. For example, ‘move’ was

extracted from Opcode of PE file 3 times. In the

Boolean vector, position of ‘move’ is 1 or TRUE.

To find the good combination of feature and

classifier for detecting malware, we did the experiment

as two steps. At the first step, we try to find what the

feature is good for classifier. In the next step, we try

to find the which classifier is good for the selected

feature. We did the first step through 30 times trial to

increase confidence of experimental result, and

calculated the average and variance of accuracy. It is

showed in Figure 2 (The exact values were shown in

Table 1). From it, you can see that the feature, Opcode

and Win. API, is better than others because of high

accuracy and small variance between classifiers. It

means that the features is robust for classifiers. Then

we proceeded the step two with Opcode and Win. API

feature.

그림 2. 각 특징들의 분류기 정확도 비교

Fig. 2. Accuracy comparison of classifier for each

features

In the Step two, we have to find the adequate

classifier for that feature. One way to compare

classifier is to measure the area under the curve(AUC)

that is ROC. The Receiver Operating Characteristic

(ROC) curve plot true positive rate(TPR) on the Y axis,

and false positive rate(FPR) on the X axis, where TPR

is probability of correctly identified malware. Also, FPR

is probability of wrongly identified benign, when a

detector identifies benign as a malware. The motivation

of ROC curve means that the top left corner of the plot

is the “ideal” point. However, it is not very realistic, but

it does mean that a larger area under the curve (AUC)

is usually better[19].

The result of second step is shown in Figure 3 (a),

where Decision Tree is better than others. In addition,

the ROC curve for other features also were showed in

(b) and (c). As summary for experiments, Table 1

showed AUC, mean accuracy and standard deviation

within classifier.

The Journal of The Institute of Internet, Broadcasting and Communication (IIBC)

Vol. 18, No. 1, pp.211-216, Feb. 28, 2018. pISSN 2289-0238, eISSN 2289-0246

- 215 -

 (a) (b)

(c)

그림 3. 분류기에 따른 ROC 곡선

Fig. 3. ROC curve by Classifier

표 1. 분류 결과

Table 1. Result of Classification

Feature

Extraction

Opcode and

Win. API

Opcode Win. API

AUC ACC SD AUC ACC SD AUCACC SD

Bernoulli NB 0.87 0.88 0.0130 0.86 0.84 0.0142 0.90 0.93 0.0105

K-NN

 (K=8)
0.93 0.95 0.0116 0.93 0.95 0.0079 0.89 0.90 0.0923

SVM 0.90 0.93 0.0103 0.90 0.93 0.0101 0.68 0.78 0.0213

Decision Tree 0.95 0.96 0.0106 0.92 0.95 0.0106 0.90 0.93 0.0114

As a result of classification, In the Bernoulli Naïve

Bayes, when only using windows API Calls, the

accuracy and AUC of the malware detection rate was

the highest. However, in the Decision Tree and SVM,

the method using Opcode and Win. API showed the

highest value of 0.96 and 0.95. Also, When using the

decision tree and Opcode and Win. API, the accuracy

was the highest at 0.96, AUC was also the highest at

0.95.

Ⅴ. CONCLUSION

In this paper, we addressed way that classify

whether unknown PE file is malware or not. In the

classification problem of malware detection domain,

feature extraction and classifier are important. For that

purpose, we studied what the feature is good for

classifier and the which classifier is good for the

selected feature. In other word, we found the good

combination of feature and classifier for detecting

malware. Thus, we did experiments at two step.

In step one, we showed that the feature, Opcode and

Win. API, is better than others[20]. Then, in step two,

we also showed that way using the feature and

Decision Tree is better than others. This results were

shown through accuracy and variance of classifier and

AUC of ROC curve.

References

[1] G Bala Krishna, V Radha, K Venugopala Rao,

“Review of Contemporary Literature on Machine

Learning based Malware Analysis and Detection

Strategies,” Global Journal of Computer Science

and Technology, vol. 16, Issue. 5, version 1.0, pp

11-16, 2016.

[2] B Kolosnjaji, A Zarras, G Webster, C Eckert,

“Deep Learning for Classification of Malware

System Call sequences,” in Australasian Joint

Conference on Artificial Intelligence, pp 137-149,

2016.

[3] Z. Bu et al., McAfee Threats Report: Second

Quarter 2012, McAfee Labs, 2012.

[4] Ga-Young Bae et al., “Applying Machine Learning

Algorithm to Method for Detecting Malware

Using Opcode”, Journal of Korea Information and

Communications Society Summer Conference

2016, Vol.60, pp1327-1328, 2016.

[5] Seung-Won Lee, Reversing Important Principles:

Malware analyst's reversing talk, Insight, pp

141-143, 2012.

[6] Ye, Yanfang, et al. "A Survey on Malware

Detection Using Data Mining Techniques," ACM

Computing Surveys (CSUR) vol.50, no.3, 41p,

2017.

[7] Jeong-been Park, Kyoung-Soo Han, Eul-Gyu Im,

A Study on Performance of ML Algorithms and Feature Extraction to detect Malware

- 216 -

This work was supported by the R.O.K. National Research Foundation under grant
NRF-2017R1D1A1B03036372.

“Malware Classification Using Worth Opcodes,”

Proceedings of the Korea Information Science

2014 Korea Computer Conference, pp943-945, Jun,

2014.

[8] R. Swinburne, “Bayes’ Theorem,” Philosophical

Review of France and the Foreigner, vol. 194, no.

2, pp250-251, 2004.

[9] Python Library, scikit-learn, Bernoulli naïve

bayes, http://scikit-learn.org/stable/modules/

naive_bayes.html.

[10] Tong, Simon, and Daphne Koller. "Support vector

machine active learning with applications to text

classification." Journal of machine learning

research, pp 45-66, Nov 2001.

[11] Han, Eui-Hong Sam, George Karypis, and Vipin

Kumar. "Text categorization using weight

adjusted k-nearest neighbor classification."

Pacific-asia conference on knowledge discovery

and data mining. Springer, Berlin, Heidelberg,

2001.

[12] Safavian, S. Rasoul, and David Landgrebe. "A

survey of decision tree classifier methodology."

IEEE transactions on systems, man, and

cybernetics Vol. 21. No. 3 pp. 660-674, 1991

[13] E. Carrera, Pefile,

https://github.com/erocarrera/pefile.

[14] Capstone, capstone,

http://www.capstone-engine.org.

[15] virusshare, https://virusshare.com.

[16] joxeankoret, http://malwareurls.joxeankoret.com.

[17] malc0de, http://malc0de.com.

[18] malwareblacklist,

http://www.malwareblacklist.com.

[19] Hanley, James A., and Barbara J. McNeil. "The

meaning and use of the area under a receiver

operating characteristic (ROC) curve." Radiology

Vol. 143, No.1 pp 29-36. 1982.

[20] Tae-Hyun Ahn, Sang-Jin Oh, Young-Man Kwon,

“Malware Detection Method using Opcode and

windows API Calls”, The Journal of The Institute

of Internet, Broadcasting and Communication, Vol.

17, No. 6, pp. 11-17, Dec 2017.

DOI: https://doi.org/10.7236/JIIBC.2017.17.6.11

저자 소개

안 태 현(준회원)
∙2016.2 을지대학교 의료IT마케팅학과

학사

∙2016.3 ～ 을지대학교 의료IT학과 석사

과정 재학 중

박 재 균(준회원)
∙2012.3 ～ 을지대학교 의료IT학과 학사

과정 재학 중

권 영 만(종신회원)
∙1985.2 KAIST 전기및전자공학과 석사

∙1998.2 KAIST 정보통신공학과 박사수

료

∙2007.2 광운대학교 전자공학과 박사

∙1993.3 ～ 을지대학교 의료IT학과 교수

