DOI QR코드

DOI QR Code

웨어러블 서비스를 위한 다중 발전소자 기반 에너지 하베스터 플랫폼 구현

An multiple energy harvester with an improved Energy Harvesting platform for Self-powered Wearable Device

  • 박현문 (한국전자부품 연구원) ;
  • 김병수 (전자부품연구원 SoC플랫폼연구센터) ;
  • 김동순 (전자부품연구원 SoC센터)
  • 투고 : 2017.12.20
  • 심사 : 2018.02.15
  • 발행 : 2018.02.28

초록

웨어러블 디바이스의 서비스 제공을 위한 지속 가능한 전원에 대한 요구가 높아짐에 따라 에너지 하베스팅의 중요성이 증대되고 있다. 본 연구는 마찰소자를 고려한 다중 에너지 하베스팅 플랫폼인 EH-P를 개발하였다. 높은 전압과 낮은 전류를 가진 하베스팅 소자에 전압을 낮추면서 전류를 높일 수 있는 스위치 회로 제시하였다. PV와 TENG의 상호보완적 구성을 통해 실내 환경에서 짧은 시간동안 MCU가 동작할 수 있는 전압과 전류를 제공할 수 있었다. 결과적으로 제안된 플랫폼을 통해 웨어러블 플랫폼을 동작시키고, 제작된 웨어러블 디바이스에서 전체 소모 전력 요구량의 29%를 제공함으로써 웨어러블 디바이스 사용시간(device life time)을 증가시킬 수 있었다. 이 논문에 제시된 결과는 멀티플 하베스터 플랫폼에서 웨어러블 하베스팅 애플리케이션의 활용을 위한 발전 소자의 가능성을 보여주었다.

The importance of energy harvesting technique is increasing due to the elevated level of demand for sustainable power sources for wearable device applications. In this study, we developed an Energy Harvesting wearable Platform(EH-P) architecture which is used in the design of a multi-energy source based on TENG. The proposed switching circuit produces power with higher current at lower voltage from energy harvesting sources with lower current at higher voltage. This can powers microcontrollers for a short period of time by using PV and TENG complementarily placed under hard conditions for the sources such as indoors. As a result, the whole interface circuit is completely self-powered with this makes it possible to run of sensing on a Wearable device platform. It was possible to increase the wearable device life time by supplying more than 29% of the power consumption to wearable devices. The results presented in this paper show the potential of multi-energy harvesting platform for use in wearable harvesting applications, provide a means of choosing the energy harvesting source.

키워드

참고문헌

  1. G. Yu, K. Chew, K. W. R., Z. Sun, H. Tang, and L. Siek, "A 400 nW single-inductor dual- input- tri-output DC-DC buck-boost conver ter with maximum power point tracking for indoor photovoltaic energy harvesting," IEEE Journal of Solid-State Circuits, vol 50, no. 11, 2015. pp. 2758-2772. https://doi.org/10.1109/JSSC.2015.2476379
  2. C. Bowen, H. Kim, P. Weaver, and S. Dunn, "Piezoelectric and ferroelectric material -s and structures for energy harvesting app -lications," Energy & Environmental Science, vol 7, no. 1, 2014, pp. 25-44. https://doi.org/10.1039/C3EE42454E
  3. Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X Fan, P. Yang, F. Yi and Z. Wang, "Triboelectric- Pyroelectric-Piezoelectric Hybrid Cell for High ‐Efficiency Energy Harvesting and Self‐ Powered Sensing," Advanced Materials, vol. 27, no. 14, 2015, pp. 2340-2347. https://doi.org/10.1002/adma.201500121
  4. Panasonic Eco Solutions Amorton Co.,Ltd, Technical Report, Amorphous Silicon Solar Cells- Indoors, Panasonic: Jan. 2016, pp. 1-10.
  5. L. Dhakar, Overview of Energy Harvesting Technologies-In Triboelectric Devices for Power Generation and Self-Powered Sensing Applications, Springer Nature Singapore : 2017, pp.9-37,
  6. ALTADEVICES Inc., Technical Report, Solar Power Energy Harvesting Electrical Integration, ALTADEVICES : Dec. 2017, pp. 1-10.
  7. J. Zhang, Y. Huang, and P. Cao, "An Inve -stigation of Wideband Rectennas for Wireless Energy Harvesting," Wireless Engineering and Technology, vol. 5, no. 04, 2014, pp. 107-113. https://doi.org/10.4236/wet.2014.54012
  8. H. Zhang and C. Shuying., "A new MPPT algorithm based on ANN in solar PV systems," Advances in Computer, Communication, Control and Automation, vol. 121, 2011, pp. 77-84.
  9. J. McCullagh, "An Active Diode Full-Wave Charge Pump for Low Acceleration Infrastructure-Based Non-Periodic Vibration Energy Harvesting.," IEEE Transactions on Circuits and Systems I. vol. PP, no. 99, 2017, pp. 1-13.
  10. J. Kim, J. Kim and C. Kim, "charge pump with a low-power integrated optimum power point tracking algorithm for indoor solar energy harvesting," IEEE Transactions on Circuits and Systems II. vol. 58, no. 12, 2017, pp. 802-806. https://doi.org/10.1109/TCSII.2011.2173971
  11. R. Calio, U. Rongala, D. Camboni, D., M. Milazzo, C. Stefanini, G. Petris and C. Oddo, "Piezoelectric energy harvesting solutions," Sensors, vol 14, no. 3, 2014, pp. 4755-4790. https://doi.org/10.3390/s140304755
  12. LINER Technology Inc, Manual, 20V High Efficiency Nanopower Step-Down Regulator 2016, LINER Inc: Jun. 2016, pp. 1-22.
  13. D. Rhee and S. Kim, "Study on a Laser Wireless Power Charge Technology," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 12, Dec. 2016, pp. 1219- 1224.
  14. J. Park, J. Shin, S. Ahn, H. Lim, and Y. Ko, "Design and Making of a Buck Converter For Smart Phone Wireless Charging," J. of the Korea Institute of Electronic Communication Science, vol. 12, no. 4, Aug. 2017, pp. 607-613. https://doi.org/10.13067/JKIECS.2017.12.4.607