DOI QR코드

DOI QR Code

A Novel High Speed Frequency Sweeping Signal Generator in X-band Based on Tunable Optoelectronic Oscillator

  • Sun, Mingming (National Research Center for Optical Sensing/Communications Integrated Networking, Southeast University) ;
  • Chen, Han (School of Instrument Science and Engineering, Southeast University) ;
  • Sun, Xiaohan (National Research Center for Optical Sensing/Communications Integrated Networking, Southeast University)
  • Received : 2017.09.19
  • Accepted : 2018.01.19
  • Published : 2018.02.25

Abstract

A novel X-band high speed frequency sweep signal generator based on a tunable optoelectronic oscillator (OEO) incorporating a frequency-swept laser is presented and the theoretical fundamentals of the design are explained. A prototype of the generator with tuning range from 8.8552 GHz to 10.3992 GHz and a fine step about 8 MHz is achieved. The generated radiofrequency signal with a single sideband (SSB) phase noise lower than -100 dBc/Hz@10KHz is experimentally demonstrated within the whole tunable range, without any narrow RF band-pass filters in the loop. And the tuning speed of the frequency sweep signal generator can reach to over 1 GHz/s benefiting from applying a novel dispersion compensation modular instead of several tens of kilometers of optical fiber delay line in the system.

Keywords

KGHHD@_2018_v2n1_53_f0001.png 이미지

FIG. 1. Experimental setup for the X-band high speed sweeping frequency signal generator based on a tunable OEO.

KGHHD@_2018_v2n1_53_f0002.png 이미지

FIG. 3. Measured electrical spectra from 8.8552 GHz to 10.3992 GHz.

KGHHD@_2018_v2n1_53_f0003.png 이미지

FIG. 4. Measured the generated 9.1992/9.2080 GHz oscillation signal.

KGHHD@_2018_v2n1_53_f0004.png 이미지

FIG. 5. Measured electrical spectrum and phase noise of the generated 9.1992 GHz (a) and 10.3992 GHz (b) oscillation signal with a frequency span of 100 MHz and resolution bandwidth of 910 KHz.

References

  1. Y. W. Huang, T. F. Tseng, C. C. Kuo, Y. J. Hwang, and C. K. Sun, "Fiber-based swept-source terahertz radar," Opt. Lett. 35, 1344-1346 (2010). https://doi.org/10.1364/OL.35.001344
  2. S. Roehr, P. Gulden, and M. Vossiek, "Method for high precision clock synchronization in wireless systems with application to radio navigation," IEEE Radio Wireless Symp. 7, 551-554 (2007).
  3. H. C. Yeoh, J. H. Jung, Y. H. Jung, and K. H. Baek, "A1.3-GHz 350-mW hybrid direct digital frequency synthesizer in 90-nm CMOS," IEEE J. Solid-State Circuits 45(9), 1845-1855 (2010). https://doi.org/10.1109/JSSC.2010.2056830
  4. A. Ashrafi, R. Adhami, and A. Milenkovic, "A direct digital frequency synthesizer based on the quasi-linear interpolation method," IEEE Trans. Circuits Syst. I: Regular Papers 57(4), 863-872 (2010). https://doi.org/10.1109/TCSI.2009.2027645
  5. S. Thuries, E. Tournier, A. Cathelin, S. Godet, and J. Graffeuil, "A 6-GHz Low-Power BiCMOS SiGe: C 0.25 ${\mu}m$ Direct Digital Synthesizer," IEEE Microw. Wireless Compon. Lett. 18, 46-48 (2008). https://doi.org/10.1109/LMWC.2007.911994
  6. C. Y. Yang, J. H. Weng, and H. Y. Chang, "A 5-GHz direct digital frequency synthesizer using an analog-sine-mapping technique in 0.35-m SiGe BiCMOS," IEEE J. Solid-State Circuits 46, 2064-2072 (2011). https://doi.org/10.1109/JSSC.2011.2145290
  7. A. Grama and G. Muntean, "Direct digital frequency synthesis implemented on a FPGA chip," in 2006 29th International Spring Seminar on Electronics Technology (2006), pp. 92-97.
  8. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. X. Zhu, W. Hu, and Z. Chen, "Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter," Opt. Lett. 38, 655-657 (2013). https://doi.org/10.1364/OL.38.000655
  9. D. Zhu, S. Pan, and D. Ben, "Tunable frequency-quadrupling dual-loop optoelectronic oscillator," IEEE Photon. Technol. Lett. 24, 194-196 (2012). https://doi.org/10.1109/LPT.2011.2176332
  10. S. Pan and J. P. Yao, "Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection," Opt. Lett. 35, 1911-1913 (2010). https://doi.org/10.1364/OL.35.001911
  11. W. Li and J. P. Yao, "A wideband frequency-tunable optoelectronic oscillator incorporating a tunable microwave-photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating," IEEE Trans. Microw. Theory Techn. 60, 1735-1742 (2012). https://doi.org/10.1109/TMTT.2012.2189231
  12. M. Li, W. Li, and J. P. Yao, Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter," IEEE Photon. Technol. Lett. 24, 1251-1253 (2012). https://doi.org/10.1109/LPT.2012.2201462
  13. W. Li and J. P. Yao, "An optically tunable optoelectronic oscillator," J. Lightw. Technol. 28, 2640-2645 (2010). https://doi.org/10.1109/JLT.2010.2058792
  14. Z. Tang, S. Pan, D. Zhu, R. Guo, Y. Zhao, M. Pan, D. Ben, and J. P. Yao, "Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG," IEEE Photon. Technol. Lett. 24, 1487-1489 (2012). https://doi.org/10.1109/LPT.2012.2205235
  15. B. Yang, X. F. Jin, H. Chi, X. M. Zhang, S. L. Zheng, S. H. Zou, K. S. Chen, E. Tangdiongga, and T. Koonen, "Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation," Photon. Technol. Lett. 24, 1051-1053 (2012). https://doi.org/10.1109/LPT.2012.2194483
  16. X. Xie, C. Zhang, T. Sun, P. Guo, X. Zhu, L. Zhu, W. Hu, and Z. Chen, "Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter," Opt. Lett. 38, 655-657 (2013). https://doi.org/10.1364/OL.38.000655
  17. J. Zhang, L. Gao, and J. P. Yao, "Tunable optoelectronic oscillator incorporating a single passband microwave photonic filter," IEEE Photon. Technol. Lett. 26, 326-329 (2014). https://doi.org/10.1109/LPT.2013.2293505
  18. R. Tao, X. Feng, Y. Cao, Z. Li, and B. Guan, "Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated Brillouin scattering," IEEE Photon. Technol. Lett. 24, 1097-1099 (2012). https://doi.org/10.1109/LPT.2012.2195486
  19. X. Han, L. Ma, Y. Shao, Q. Ye, Y. Gu, and M. Zhao,"Polarization multiplexed dual-loop optoelectronic oscillator based on stimulated Brillouin scattering," Opt. Commun. 383, 138-143 (2017). https://doi.org/10.1016/j.optcom.2016.08.081
  20. X. S. Yao and L. Maleki, "Multi-loop optoelectronic oscillator," IEEE J. Quant. Electron. 36, 79-84 (2000). https://doi.org/10.1109/3.817641
  21. T. Sakamoto, T. Kawanishi, S. Shinada, and M. Izutsu, "Optoelectronic oscillator using LiNbO intensity modulator with resonant electrode," Electron. Lett. 41, 716-718 (2005). https://doi.org/10.1049/el:20051241
  22. E. Shumakher and G. Eisenstein, "Noise properties of mutually sustained microwave-optoelectronic oscillator pair," Electron. Lett. 41, 768-770 (2005). https://doi.org/10.1049/el:20051552
  23. Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, "An optical domain combined dual-loop optoelectronic oscillator, IEEE Photon. Technol. Lett. 19, 807-809 (2007). https://doi.org/10.1109/LPT.2007.897290
  24. S. Pan and J. P. Yao, A frequency-doubling optoelectronic oscillator using a polarization modulator," IEEE Photon. Technol. Lett. 21, 929-931 (2009). https://doi.org/10.1109/LPT.2009.2020685
  25. F. Kong, W. Li, and J. P. Yao, "Transverse load sensing based on a dual-frequency optoelectronic oscillator," Opt. Lett. 38, 2611-2613 (2013). https://doi.org/10.1364/OL.38.002611