DOI QR코드

DOI QR Code

Investigation of Stimulated Polariton Scattering from the B1-symmetry Modes of the KNbO3 Crystal

  • Li, Zhongyang (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Wang, Mengtao (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Wang, Silei (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Yuan, Bin (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Bing, Pibin (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Xu, Degang (College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University) ;
  • Yao, Jianquan (College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University)
  • Received : 2017.06.12
  • Accepted : 2017.12.12
  • Published : 2018.02.25

Abstract

Stimulated polariton scattering from the $B_1$-symmetry modes of a $KNbO_3$ crystal to generate a terahertz wave (THz-wave) with a noncollinear phase-matching scheme is investigated. The frequency-tuning characteristics of the THz-wave by varying the phase-matching angle and pump wavelength are analyzed. The expression for the effective parametric gain length under the noncollinear phase-matching condition is deduced. Parametric gain and absorption characteristics of the THz-wave in $KNbO_3$ are theoretically simulated. The characteristics of $KNbO_3$ for a terahertz parametric oscillator (TPO) are compared to those of $MgO:LiNbO_3$. The analysis indicates that $KNbO_3$ is an excellent optical crystal for a TPO, to enhance the THz-wave output.

Keywords

KGHHD@_2018_v2n1_90_f0001.png 이미지

FIG. 1. Schematic diagram of a surface-emitting TPO using KNbO3 with a noncollinear phase-matching scheme.

KGHHD@_2018_v2n1_90_f0002.png 이미지

FIG. 2. Dispersion curve for the B1-symmetry polariton modes in KNbO3 and the phase-matching curves for the 1064-nm pump laser.

KGHHD@_2018_v2n1_90_f0003.png 이미지

FIG. 3. Dispersion curve for the B1-symmetry polariton modes in KNbO3 and the phase-matching curves, at room temperature and a fixed phase-matching angle θ of 1°.

KGHHD@_2018_v2n1_90_f0004.png 이미지

FIG. 4. Effective parametric gain length versus pump wavelength, assuming the physical length of the resonant cavity is 80 mm, l is 60 mm, and wp is 1 mm.

KGHHD@_2018_v2n1_90_f0005.png 이미지

FIG. 5. Effective parametric gain length versus the radius of the pump wave, assuming the physical length of the resonant cavity is 80 mm, l is 60 mm, and p λ is 1064 nm.

KGHHD@_2018_v2n1_90_f0006.png 이미지

FIG. 6. Effective parametric gain length versus crystal length, assuming the physical length of the resonant cavity is 80 mm, wp is 1 mm, and p λ is 1064 nm.

KGHHD@_2018_v2n1_90_f0007.png 이미지

FIG. 7. THz-wave parametric gain coefficient gT and absorption coefficient T α for KNbO3 and MgO:LiNbO3 at room temperature( p λ = 633 nm, Ip = 100 MW/cm2): (a) gain coefficient gT, (b) absorption coefficient Tα .

References

  1. L. Ho, M. Pepper, and P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nat. Photon. 2, 541-543 (2008). https://doi.org/10.1038/nphoton.2008.174
  2. D. Abbott and X. C. Zhang, "Scanning the issues: T-ray imaging, sensing, and retection," Proc. IEEE 95, 1509-1513 (2007). https://doi.org/10.1109/JPROC.2007.900894
  3. J. L. Liu, J. M. Dai, S. L. Chin, and X. C. Zhang, "Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases," Nat. Photon. 4, 627-631 (2010). https://doi.org/10.1038/nphoton.2010.165
  4. T. Kleine-Ostmann and T. Nagatsuma, "A review on terahertz communications research," J. Infrared, Millimeter, Terahertz Waves 32, 143-171 (2011). https://doi.org/10.1007/s10762-010-9758-1
  5. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photon. 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
  6. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, E. Fertein, R. Bocquet, and G. Mouret, "Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy," Opt. Lett. 31, 2356-2358 (2006). https://doi.org/10.1364/OL.31.002356
  7. K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 35, R1-R14 (2002). https://doi.org/10.1088/0022-3727/35/3/201
  8. D. Wu and T. Ikari, "Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam," Appl. Phys. Lett. 95, 141105 (2009). https://doi.org/10.1063/1.3240871
  9. Y. J. Ding, "High-power tunable terahertz sources based on parametric processes and applications," IEEE J. Sel. Topics Quantum Electron. 13, 705-720 (2007). https://doi.org/10.1109/JSTQE.2007.895279
  10. T. Ikari, R. Guo, H. Minamide, and H. Ito, "Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration," J. Eur. Opt. Soc. 5, 10054 (2010).
  11. Y. J. Ding and W. Shi, "From backward THz difference-frequency generation to parametric oscillation," IEEE J. Sel. Topics Quantum Electron. 12, 352-359 (2006). https://doi.org/10.1109/JSTQE.2006.871953
  12. R. Sowade, I. Breunig, C. Tulea, and K. Buse, "Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime," Appl. Phys. B 99, 63-66 (2010).
  13. D. Molter, M. Theuer, and R. Beigang, "Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate," Opt. Express 17, 6623-6628 (2009). https://doi.org/10.1364/OE.17.006623
  14. B. Zysset, I. Biaggio, and P. Gunter, "Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence," J. Opt. Soc. Am. B 9, 380-386 (1992). https://doi.org/10.1364/JOSAB.9.000380
  15. I. Biaggio, P. Kerkoc, L. S. Wu, P. Gunter, and B. Zysset, "Refractive indices of orthorhombic $KNbO_3$. II. Phase-matching configurations for nonlinear-optical interactions," J. Opt. Soc. Am. B 9, 507-517 (1992).
  16. W. Seelert, P. Kortz, D. Rytz, B. Zysset, D. Ellgehausen, and G. Mizell, "Second-harmonic generation and degradation in critically phase-matched $KNbO_3$ with a diode-pumped Q-switched Nd:YLF laser," Opt. Lett. 17, 1432-1434 (1992). https://doi.org/10.1364/OL.17.001432
  17. D. G. Bozinis and J. P. Hurrell, "Optical modes and dielectric properties of ferroelectric orthorhombic $KNbO_3$," Phys. Rev. B 13, 3109-3120 (1976). https://doi.org/10.1103/PhysRevB.13.3109
  18. T. Ikari, X. Zhang, H. Minamide, and H. Ito, "THz-wave parametric oscillator with a surface-emitted configuration," Opt. Express 14, 1604-1610 (2006). https://doi.org/10.1364/OE.14.001604
  19. S. J. Brosnan and R. L. Byer, "Optical parametric oscillator threshold and linewidth studies," IEEE J. Quantum Electron. 15, 415-431 (1979). https://doi.org/10.1109/JQE.1979.1070027
  20. S. S. Sussman, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (Microwave Laboratory Report No. 1851, Stanford University, 1970), pp. 22-52.