DOI QR코드

DOI QR Code

Flexible Technique to Enhance Color-image Quality for Color-deficient Observers

  • Woo, Sungju (Graduate School of Culture Technology, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Chongwook (Graduate School of Culture Technology, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Baek, Ye Seul (School of Design and Human Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kwak, Youngshin (School of Design and Human Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2017.11.14
  • Accepted : 2017.12.26
  • Published : 2018.02.25

Abstract

Color-normal observers (CNOs) and color-deficient observers (CDOs) have different preferences and emotions for color images. A color-image quality-enhancement algorithm for a CDO is developed to easily adjust images according to each observer's preference or image quality factors. The color-perception differences between CDO and CNO are analyzed and modeled in terms of the YCbCr chroma ratio and hue difference; then the color-shift method is designed to control the degree of color difference.

Keywords

KGHHD@_2018_v2n1_101_f0001.png 이미지

FIG. 1. Hue-shift methods for color-emotion experiments for CDOs.

KGHHD@_2018_v2n1_101_f0002.png 이미지

FIG. 2. Images manipulated using the hue-shift methods for color-emotion experiments.

KGHHD@_2018_v2n1_101_f0003.png 이미지

FIG. 3. Method to calculate color-perception difference between color-normal and color-deficient observers.

KGHHD@_2018_v2n1_101_f0004.png 이미지

FIG. 4. Color-perception comparison between the colornormal and the color- deficient in the CIELAB a*b* plane.

KGHHD@_2018_v2n1_101_f0005.png 이미지

FIG. 5. Comparison of perceived CIELAB hue angle between color-normal and color-deficient observers.

KGHHD@_2018_v2n1_101_f0006.png 이미지

FIG. 6. Calculated YCC_Hue angle differences and YCC_Chroma_ratio for protanomaly.

KGHHD@_2018_v2n1_101_f0007.png 이미지

FIG. 7. Calculated YCC_Hue angle differences and YCC_Chroma_ratio for deuteranomaly.

KGHHD@_2018_v2n1_101_f0008.png 이미지

FIG. 8. YCC_Hue angle differences and YCC_Chroma_ratio modeling for protanomaly.

KGHHD@_2018_v2n1_101_f0009.png 이미지

FIG. 9. YCC_Hue angle Differences and YCC_Chroma_ratio modeling for deuteranomaly.

KGHHD@_2018_v2n1_101_f0010.png 이미지

FIG. 10. Flowchart of flexible color-enhancement algorithm for CDOs.

KGHHD@_2018_v2n1_101_f0011.png 이미지

FIG. 11. Examples of images manipulated using the proposed algorithm.

TABLE 1. Experimental color-emotion results for deuteranomaly

KGHHD@_2018_v2n1_101_t0001.png 이미지

References

  1. J. Nam, Y. M. Ro, Y. Huh, and M. Kim, "Visual content adaptation according to user perception characteristics," IEEE Trans. Multimedia 7(3), 435-445 (2005). https://doi.org/10.1109/TMM.2005.846801
  2. M. D. Fairchild, Color appearance models, 3rd edition (Wiley, 2013), 32 p.
  3. H. Brettel, F. Viénot, and J. Mollon, "Computerized simulation of color appearance for dichromats," J. Opt. Soc. Am. A 14(10), 2647-2655 (1997) https://doi.org/10.1364/JOSAA.14.002647
  4. G. M. Machado, M. M. Oliveira, and L. A. Fernandes, "A physiologically-based model for simulation of color vision deficiency," IEEE Trans. Vis. Comput. Graphics 15(6), 1291-1298 (2009). https://doi.org/10.1109/TVCG.2009.113
  5. J. B. Huang, Y. C. Tseng, S. I. Wu, and S. J. Wang, "Information preserving color transformation for protanopia and deuteranopia," IEEE Signal Process. Lett. 14(10), 711-714 (2007). https://doi.org/10.1109/LSP.2007.898333
  6. C. R. Huang, K. C. Chiu, and C. S Chen, "Temporal color consistency-based video reproduction for dichromats," IEEE Trans. Multimedia 13(5), 435-445 (2011).
  7. J. Y. Jeong, H. J. Kim, T. S. Wang, Y. J. Yoon, and S. J. Ko, "An efficient re-coloring method with information preserving for the color-blind," IEEE Trans. Consum. Electron. 57(4), 1953-1960 (2011). https://doi.org/10.1109/TCE.2011.6131176
  8. M. M. Oliveira, "Towards more accessible visualizations for color-vision-deficient individuals," Comput. Sci. Eng. 15(5), 80-87 (2013). https://doi.org/10.1109/MCSE.2013.113
  9. R. Mochizuki, T. Nakamura, J. Chao, and R. Lenz, "Colorweak correction by discrimination threshold matching," in Proc. CGIV'08, pp. 208-213.
  10. Y. Chen, Y. Guan, T. Ishikawa, H. Eto, T. Nakatsue, J. Chao, and Ayama, "Preference for color-enhanced images assessed by color deficiencies," Color Res. Appl. 39(3), 234-251 (2014). https://doi.org/10.1002/col.21795
  11. Y. S. Baek, Y. Kwak, S. Woo, and C. Park, "Preferred memory color difference between the deuteranomalous and normal color vision," Proc. SPIE 9395, 939517 (2015).
  12. L. C. Ou, M. R. Luo, A. Woodcock, and A. Wright, "A study of colour emotion and colour preference. Part I:Colour emotions for single colours," Color Res. Appl. 29(3), 232-240. (2004). https://doi.org/10.1002/col.20010
  13. J. Posner, J. A. Russell, and B. S. Peterson, "The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology," Dev. Psychopathol. 17(3), 715-734 (2005). https://doi.org/10.1017/S0954579405050340