DOI QR코드

DOI QR Code

Complete Genome Sequences and Evolutionary Analysis of Cucurbit aphid-borne yellows virus Isolates from Melon in Korea

  • Kwak, Hae-Ryun (Crop Protection Division, National Institute of Agricultural Science) ;
  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Kim, Eun-A (Crop Protection Division, National Institute of Agricultural Science) ;
  • Seo, Jang-Kyun (Graduate school of International Agricultural Technology, Seoul National University) ;
  • Kim, Chang-Seok (Crop Protection Division, National Institute of Agricultural Science) ;
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Kim, Jeong-Soo (Department of Plant Medicine, Andong National University) ;
  • Choi, Hong-Soo (Crop Protection Division, National Institute of Agricultural Science) ;
  • Kim, Mikyeong (Crop Protection Division, National Institute of Agricultural Science)
  • Received : 2018.03.19
  • Accepted : 2018.07.24
  • Published : 2018.12.01

Abstract

Complete genome sequences of 22 isolates of Cucurbit aphid-borne yellows virus (CABYV), collected from melon plants showing yellowing symptom in Korea during the years 2013-2014, were determined and compared with previously reported CABYV genome sequences. The complete genomes were found to be 5,680-5,684 nucleotides in length and to encode six open reading frames (ORFs) that are separated into two regions by a non-coding internal region (IR) of 199 nucleotides. Their genomic organization is typical of the genus Polerovirus. Based on phylogenetic analyses of complete nucleotide (nt) sequences, CABYV isolates were divided into four groups: Asian, Mediterranean, Taiwanese, and R groups. The Korean CABYV isolates clustered with the Asian group with > 94% nt sequence identity. In contrast, the Korean CABYV isolates shared 87-89% sequence identities with the Mediterranean group, 88% with the Taiwanese group, 81-84% with the CABYV-R group, and 72% with another polerovirus, M.. Recombination analyses identified 24 recombination events (12 different recombination types) in the analyzed CABYV population. In the Korean CABYV isolates, four recombination types were detected from eight isolates. Two recombination types were detected in the IR and P3-P5 regions, respectively, which have been reported as hotspots for recombination of CABYV. This result suggests that recombination is an important evolutionary force in the genetic diversification of CABYV populations.

Keywords

E1PPBG_2018_v34n6_532_f0001.png 이미지

Fig. 1. Geographical locations in Korea at which the CABYV isolates were collected.

E1PPBG_2018_v34n6_532_f0002.png 이미지

Fig. 3. Genome organization of Korean CABYV isolates (A). The six proteins are separated by IR into two regions: 5’ proximal and 3’ proximal proteins. A ribosomal frame shift (-1) in the P1-P2 protein is indicated at nt 1,488 and readthrough of the P3-P5 protein occurs at nt 4,110. Nucleotide (B) and deduced amino acid (C) sequence similarities in the CABYV population. Full-length sequences of 33 CABYV isolates were aligned by ClustalX2 and analyzed using AlignX by setting window site to estimate similarities. ‘+1’ on y-axis means that sequences are perfectly conserved.

E1PPBG_2018_v34n6_532_f0003.png 이미지

Fig. 4. Phylogenetic trees reconstructed using the complete nucleotide sequences of the CABYV isolates. Phylogenetic trees were reconstructed using maximum likelihood in MEGA 6.

E1PPBG_2018_v34n6_532_f0004.png 이미지

Fig. 5. Split decomposition network of the CABYV population. Phylogenetic network analysis was performed using SplitsTree v. 4.1 program.

Table 1. Survey and detection of CABYV from melon in seven areas in Korea

E1PPBG_2018_v34n6_532_t0001.png 이미지

Table 2. Primer pairs used for detection and full-length sequencing of the CABYV genome

E1PPBG_2018_v34n6_532_t0002.png 이미지

Table 3. Database of the complete nucleotide sequences of CABYV genomes

E1PPBG_2018_v34n6_532_t0003.png 이미지

E1PPBG_2018_v34n6_532_t0004.png 이미지

Fig. 2. Symptoms induced by CABYV on naturally infected melon plants in Korea. Yellowing (A), leaf mosaic (B), and informal net on melon fruits (C)

Table 4. Nucleotide diversity for different genomic regions of the CABYV population

E1PPBG_2018_v34n6_532_t0005.png 이미지

Table 5. Nucleotide and amino acid sequence identities (%) between the Korean CABYV isolate CY3 and other CABYV isolates

E1PPBG_2018_v34n6_532_t0006.png 이미지

Table 6. Recombination in Korean CABYV populations

E1PPBG_2018_v34n6_532_t0007.png 이미지

References

  1. Abou-Jawdah, Y., Sobh, H. and Fayyad, A. 1997. First report of cucurbit aphid-borne yellows luteovirus in Lebanon. Plant Dis. 81:1331.
  2. Al Saleh, M. A., Al-Shahwan, I. M., Amer, M. A., Shakeel, M. T., Kamran, A., Xanthis, C. K., Orfanidou, C. G. and Katis, N. I. 2015. First report of Cucurbit aphid-borne yellows virus in cucurbit crops in Saudi Arabia. Plant Dis. 99:894.
  3. Bananej, K., Desbiez, C., Wipf-Scheibel, C., Vahdat, I., Kheyr-Pour, A., Ahoonmanesh, A. and Lecoq, H. 2006. First report of Cucurbit aphid-borne yellows virus in Iran causing yellows on four cucurbit crops. Plant Dis. 90:526.
  4. D'Arcy, C. J. and Domier, L. L. 2005. Family luteoviridae. In: Virus taxonomy: Classification and nomenclature of viruses. Eighth report of the international committee on taxonomy of viruses. eds. by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger and L. A. Ball, pp. 891-900. Elsevier, Academic Press, Netherlands.
  5. Gibbs, M. J. and Cooper, J. I. 1995. A recombinational event in the history of luteoviruses probably induced by base-pairing between the genomes of two distinct viruses. Virology 206:1129-1132. https://doi.org/10.1006/viro.1995.1037
  6. Guilley, H., Wipf-Scheibel, C., Richards, K., Lecoq, H. and Jonard, G. 1994. Nucleotide sequence of cucurbit aphid-borne yellows luteovirus. Virology 202:1012-1017. https://doi.org/10.1006/viro.1994.1429
  7. Hauser, S., Stevens, M., Mougel, C., Smith, H. G., Fritsch, C., Herrbach, E. and Lemaire, O. 2000. Biological, serological, and molecular variability suggest three distinct polerovirus species infecting beet or rape. Phytopathology 90:460-466. https://doi.org/10.1094/PHYTO.2000.90.5.460
  8. Huang, L. F., Naylor, M., Pallett, D. W., Reeves, J., Cooper, J. I. and Wang, H. 2005. The complete genome sequence, organization and affinities of carrot red leaf virus. Arch. Virol. 150:1845-1855. https://doi.org/10.1007/s00705-005-0537-6
  9. Huson, D. H. and Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:254-267. https://doi.org/10.1093/molbev/msj030
  10. Juarez, M., Truniger, V. and Aranda, M. A. 2004. First report of Cucurbit aphid-borne yellows virus in Spain. Plant Dis. 88:907.
  11. Juarez, M., Kassem, M. A., Sempere, R. N., Truniger, V., Moreno, I. M. and Aranda, M. A. 2005. Cucurbit aphid-borne yellows virus (CABYV): a new virus found in cucurbit crops of Southeastern Spain. Bol. San. Veg. Plagas 31:587-598 (in Spanish).
  12. Kassem, M. A., Juarez, M., Gomez, P., Mengual, C. M., Sempere, R. N., Plaza, M., Elena, S. F., Moreno, A., Fereres, A. and Aranda, M. A. 2013. Genetic diversity and potential vectors and reservoirs of Cucurbit aphid-borne yellows virus in southeastern Spain. Phytopathology 103:1188-1197. https://doi.org/10.1094/PHYTO-11-12-0280-R
  13. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  14. Knierim, D., Tsai, W. S., Deng, T. C., Green, S. K. and Kenyon, L. 2013. Full-length genome sequences of four polerovirus isolates infecting cucurbits in Taiwan determined from total RNA extracted from field samples. Plant Pathol. 62:633-641. https://doi.org/10.1111/j.1365-3059.2012.02653.x
  15. Lecoq, H., Bourdin, D., Wipf-Scheibel, C., Bon, M., Lot, H., Lemaire, O. and Herrbach, E. 1992. A new yellowing disease of cucurbits caused by a luteovirus, cucurbit aphid-borne yellows virus. Plant Pathol. 41:749-761. https://doi.org/10.1111/j.1365-3059.1992.tb02559.x
  16. Lee, H. J., Kim, M. K., Lee, S. G., Choi, C. S., Choi, H. S., Kwak, H. R., Choi, G. S. and Chun, C. 2015. Physiological characteristics of melon plants showing leaf yellowing symptoms caused by CABYV infection. Korean J. Hortic. Sci. Technol. 33:210-218. https://doi.org/10.7235/hort.2015.14149
  17. Lemaire, O. J., Gubler, W. D., Valencia, J., Lecoq, H. and Falk, B. W. 1993. First report of cucurbit aphid-borne yellows luteovirus in the United States. Plant Dis. 77:1169.
  18. Li, W. H. 1993. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol. 36:96-99. https://doi.org/10.1007/BF02407308
  19. Mayo, M. A. and D'Arcy, C. J. 1999. Family Luteoviridae: a reclassification of luteoviruses. In: The Luteoviridae, eds. by H. G. Smith and H. Barker, pp. 15-22. CABI Publishing, Wallingford, UK.
  20. Mayo, M. A. and Miller, W. A. 1999. The structure and expression of luteovirus genomes. In: The Luteoviridae, eds. by H. G. Smith and H. Barker, pp. 23-42. CABI Publishing, Wallingford, UK.
  21. Mnari Hattab, M., Kummert, J., Roussel, S., Ezzaier, K., Zouba, A. and Jijakli, M. H. 2005. First report of Cucurbit aphid-borne yellows virus in Tunisia causing yellows on five cucurbitacious species. Plant Dis. 89:776.
  22. Omar, A. F. and Bagdady, N. A. 2012. Cucurbit aphid-borne yellows virus in Egypt. Phytoparasitica 40:177-184. https://doi.org/10.1007/s12600-011-0212-2
  23. Orfanidou, C., Maliogka, V. I. and Katis, N. I. 2014. First Report of Cucurbit chlorotic yellows virus in Cucumber, Melon, and Watermelon in Greece. Plant Dis. 98:1446.
  24. Pamilo, P. and Bianchi, N. O. 1993. Evolution of the Zfx and Zfy genes: Rates and interdependence between the genes. Mol. Biol. Evol. 10:271-281.
  25. Pfeffer, S., Dunoyer, P., Heim, F., Richards, K. E., Jonard, G. and Ziegler-Graff, V. 2002. P0 of beet Western yellows virus is a suppressor of posttranscriptional gene silencing. J. Virol. 76:6815-6824. https://doi.org/10.1128/JVI.76.13.6815-6824.2002
  26. Shang, Q. X., Xiang, H. Y., Han, C. G., Li, D. W. and Yu, J. L. 2009. Distribution and molecular diversity of three cucurbitinfecting poleroviruses in China. Virus Res. 145:341-346. https://doi.org/10.1016/j.virusres.2009.07.017
  27. Svoboda, J., Leisova-Svobodova, L. and Lecoq, H. 2011. First Report of Cucurbit aphid-borne yellows virus in Squash in the Czech Republic. Plant Dis. 95:220.
  28. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  29. Tomassoli, L. and Meneghini, M. 2007. First report of Cucurbit aphid-borne yellows virus in Italy. Plant Pathol. 56:720.
  30. Xiang, H. Y., Shang, Q. X., Han, C. G., Li, D. W. and Yu, J. L. 2008a. First report on the occurrence of Cucurbit aphid-borne yellows virus on nine cucurbitaceous species in China. Plant Pathol. 57:390.
  31. Xiang, H. Y., Shang, Q. X., Han, C. G., Li, D. W. and Yu, J. L. 2008b. Complete sequence analysis reveals two distinct poleroviruses infecting cucurbits in China. Arch. Virol. 153:1155-1160. https://doi.org/10.1007/s00705-008-0083-0
  32. Xiang, H. Y., Dong, S. W., Zhang, H. Z., Wang, W. L., Li, M. Q., Han, C. G., Li, D. W. and Yu, J. L. 2010. Molecular characterization of two Chinese isolates of Beet western yellows virus infecting sugar beet. Virus Genes 41:105-110. https://doi.org/10.1007/s11262-010-0474-7
  33. Yardimci, N. and Ozgonen, H. 2007. First report of Cucurbit aphid-borne yellows virus in Turkey. Aust. Plant Dis. Notes 2:59. https://doi.org/10.1071/DN07024