DOI QR코드

DOI QR Code

Performance assessment of an urban stormwater infiltration trench considering facility maintenance

침투도랑 유지관리를 통한 도시 강우유출수 처리 성능 평가

  • Reyes, N.J. D.G. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Geronimo, F.K.F. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Choi, H.S. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Kim, L.H. (Department of Civil and Environmental Engineering, Kongju National University)
  • Received : 2018.10.31
  • Accepted : 2018.11.19
  • Published : 2018.11.30

Abstract

Stormwater runoff containing considerable amounts of pollutants such as particulates, organics, nutrients, and heavy metals contaminate natural bodies of water. At present, best management practices (BMP) intended to reduce the volume and treat pollutants from stormwater runoff were devised to serve as cost-effective measures of stormwater management. However, improper design and lack of proper maintenance can lead to degradation of the facility, making it unable to perform its intended function. This study evaluated an infiltration trench (IT) that went through a series of maintenance operations. 41 monitored rainfall events from 2009 to 2016 were used to evaluate the pollutant removal capabilities of the IT. Assessment of the water quality and hydrological data revealed that the inflow volume was the most relative factor affecting the unit pollutant loads (UPL) entering the facility. Seasonal variations also affected the pollutant removal capabilities of the IT. During the summer season, the increased rainfall depths and runoff volumes diminished the pollutant removal efficiency (RE) of the facility due to increased volumes that washed off larger pollutant loads and caused the IT to overflow. Moreover, the system also exhibited reduced pollutant RE for the winter season due to frozen media layers and chemical-related mechanisms impacted by the low winter temperature. Maintenance operations also posed considerable effects of the performance of the IT. During the first two years of operation, the IT exhibited a decrease in pollutant RE due to aging and lack of proper maintenance. However, some events also showed reduced pollutant RE succeeding the maintenance as a result of disturbed sediments that were not removed from the geotextile. Ultimately, the presented effects of maintenance operations in relation to the pollutant RE of the system may lead to the optimization of maintenance schedules and procedures for BMP of same structure.

강우유출수 내 포함된 입자상 물질, 유기물, 영양물질, 중금속 등의 오염물질은 수계에 악영향을 미친다. 이러한 강우유출수 내 포함된 오염물질 감소와 처리를 위해 최적관리기법(BMP)을 도입하고 있으며, 비용효율적인 방법으로 평가되고 있다. 하지만, 잘못된 설계와 유지관리 부족은 시설의 성능을 저하시켜 원활한 기능을 수행하지 못하고 있는 실정이다. 따라서, 본 연구에서는 지속적인 유지관리가 진행된 침투도랑(IT)의 시설에 대한 평가를 수행하였다. 2009년부터 2016년까지 총 41회의 모니터링을 수행하였으며 침투도랑(IT)의 오염물질 저감효율 평가를 수행하였다. 수질 및 수문학적 분석결과, 시설에 유입되는 유입수는 단위 오염 부하량에 영향을 미치는 요인으로 나타났다. 또한, 계절의 변화는 오염물질 저감능력에 영향을 미치는 것으로 분석되었다. 여름철 강수량 및 강우강도의 증가로 인해 Overflow 및 유량의 증가가 발생되었으며, 이로 인해 저감효율이 감소하였다. 또한, 겨울철 낮은 온도로 인해 여재 및 화학적 메카니즘의 효과 감소로 오염물질 저감 효율이 감소되는 것으로 분석되었다. 침투도랑(IT)의 유지관리는 시설의 효율에 영향을 미치는 것으로 평가되었다. 시설 설치 이후 2년 동안 유지관리 부족으로 오염물질 저감효율이 낮은 것으로 나타났으며, 일부 모니터링에서 지오텍스타일 내 제거 되지 않은 퇴적물로 인해 오염물질 저감효율의 감소를 보였다. 본 연구를 통하여, 시설의 유지관리는 오염물질 저감효과에 영향을 미치는 것으로 나타났으며, BMP 시설의 최적 유지관리 기간 및 방법 등은 향후 유용한 자료로 사용 될 수 있을 것으로 사료된다.

Keywords

HKSJBV_2018_v20n4_424_f0001.png 이미지

Fig. 1. Schematic diagram of the IT located at Kongju National University

HKSJBV_2018_v20n4_424_f0002.png 이미지

Fig. 2. Inflow and outflow pollutant event mean concentrations

HKSJBV_2018_v20n4_424_f0003.png 이미지

Fig. 3. Seasonal inflow and outflow unit pollutant loads

HKSJBV_2018_v20n4_424_f0004.png 이미지

Fig. 4. Pollutant removal performance of the IT prior and succeeding maintenance operations

Table 1. Properties of the infiltration trench and its catchment area

HKSJBV_2018_v20n4_424_t0001.png 이미지

Table 2. Summary of monitored rainfall events

HKSJBV_2018_v20n4_424_t0002.png 이미지

References

  1. Al-Rubaei, A. M. (2016). Long-Term Performance, Operation and Maintenance Needs of Stormwater Control Measures. Lulea: Lulea University of Technology.
  2. American Public Health Association; American Water Works Association; Water Environment Federation. (1992). Standard Methods For the Examination of Water and Wastewater. Washington DC: American Public Health Association.
  3. Baltrenaite, E., Baltrenas, P., & Lietuvninkas, A. (2016). The Sustainable Role of the Tree in Environmental Protection Technologies. Springer.
  4. Barrett, M. E. (2003). Performance, cost, and maintenance requirements of Austin sand filters. Journal of water resources planning and management, 234-242.
  5. Barrett, M. E. (2003). Performance, Cost, and Maintenance Requirements of Austin Sand Filters. Journal of Water Resources Planning and Management, 129(3), 234-242. doi:10.1061/(asce)0733-9496(2003)129:3(234)
  6. Birch, G. F., Fazeli, M. S., & Matthai, C. (2005). Efficiency of an infiltration basin in removing contaminants from urban stormwater. Environmental Monitoring and Assessment, 23-38. doi: 10.1007/s10661-005-9126-0
  7. Drake, J., Bradford, A., & Van Seters, T. (2014). Winter effluent quality from partial-infiltration permeable pavement systems. Journal of Environmental Engineering, 04014036. doi:10.1061/(asce)ee.1943-7870.0000854
  8. Gobel, P., Dierkes, C., & Coldewey, W. (2007). Storm water runoff concentration matrix for urban areas. Journal of contaminant hydrology, 26-42. doi:10.1016/j.jconhyd.2006.08.008
  9. Gunawardana, C., Egodawatta, P., & Goonetilleke, A. (2014). Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces. Environmental Pollution, 44-53. doi:10.1016/j.envpol.2013.08.010
  10. Hatt, B. E., Fletcher, T. D., & Deletic, A. (2008). Hydraulic and Pollutant Removal Performance of Fine Media Stormwater Filtration Systems. Environmental science & technology, 2535-2541. doi:10.1021/es071264p
  11. Hilliges, R., Schriewer, A., & Helmereich, B. (2013). A three-stage treatment system for highly polluted urban road runoff. Journal of environmental management, 306-312. doi:10.1016/j.jenvman.2013.05.024
  12. Houle, J. J., Roseen, R. M., Ballestero, T. P., Puls, T. A., & Sherrard, J. J. (2013). Comparison of Maintenance Cost, Labor Demands,. Journal of Environmental Engineering, 932-938. doi:10.1061/(asce)ee.1943-7870.0000698
  13. Lewellyn, C., Lyons, C. E., Traver, R. G., & Wadzuk, B. M. (2015). Evaluation of Seasonal and Large Storm Runoff Volume Capture of an Infiltration Green Infrastructure System. Journal of Hydrologic Engineering, 04015047. doi:10.1061/(asce)he.1943-5584.0001257
  14. Li, D., Wan, J., Ma, Y., Wang, Y., Huang, M., & Chen, Y. (2015, March 13). Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City. doi:10.1371/journal.pone.0118776
  15. Li, H. (2015). Green infrastructure for highway stormwater management: Field investigation for future design, maintenance, and management needs. Journal of Infrastructure Systems, 05015001. doi:10.1061/(asce)is.1943-555x.0000248
  16. Ma, Y., Egodawatta, P., McGree, J., Liu, A., & Goonetilleke, A. (2016). Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 764-772. doi:10.1016/j.scitotenv.2016.03.067
  17. Maniquiz, M. C. (2009). Thesis for the Degree of Master of Science in Civil Engineering: Urban Runoff Treatment by Means of an Infiltration System During Rainfall Events. Cheonan: Kongju National University.
  18. Maniquiz-Redillas, M. (2018). Maintenance requirements for stormwater management facilities. In IWA, Wealth Creation without Pollution (pp. 171-191). London: IWA Publishing.
  19. Maniquiz-Redillas, M. C., Geronimo, F. K., & Kim, L.-H. (2014). Investigation on the effectiveness of pretreatment instormwater management technologies. Journal of Environmental Sciences, 1824-1830. doi:10.1016/j.jes.2014.06.018
  20. Mercado, J. M. R., Maniquiz-Redillas, M. C., & Kim, L-H. (2014). Laboraory study on the effectiveness of a hybrid best management practice. Desalination and Water Treatment, 3126-3133. doi:10.1080/19443994.2014.922287
  21. Natarajan, P., & Davis, A. P. (2016). Performance of a 'Transitioned'Infiltration Basin Part 2: Nitrogen and Phosphorus Removals. Water Environment Research, 291-302. doi:10.2175/106143015x14362865226077
  22. Petrucci, G., Gromaire, M.-C., Shorshani, M. F., & Chebbo, G. (2014). Nonpoint source pollution of urban stormwater runoff: a methodology for source analysis. Environmental Science and Pollution Research, 10225-10242. doi:10.1007/s11356-014-2845-4
  23. Poudel, D., Lee, T., Srinivasan, R., Abbaspour, K., & Jeong, C. (2013). Assessment of seasonal and spatia lvariation of surface water quality, identification of factors associated with water quality variability, and the modeling of critical nonpoint source pollution areas in an agricultural watershed. Journal of Soil and Water Conservation, 155-171. doi:10.2489/jswc.68.3.155
  24. Qin, H., Tan, X., Fu, G., Zhang, Y., & Huang, Y. (2013). Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China. Journal of Hydrology, 79-88. doi:10.1016/j.jhydrol.2013.04.053
  25. Reddy, K. R., Xie, T., & Dastgheibi, S. (2014). Removal of heavy metals from urban stormwater runoff using different filter materials. Journal of Environmental Chemical Engineering, 282-292. doi:10.1016/j.jece.2013.12.020
  26. Sidhu, J., Ahmed, W., Gernjak, W., Aryal, R., McCarthy, D., Palmer, A., et al. (2013). Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. Science of the Total Environment, 488-496. doi:10.1016/j.scitotenv.2013.06.020
  27. Valtanen, M., Sillanpaa, N., & Setala, H. (2014). The effects of urbanization on runoff pollutant concentrations, loadings and their seasonal patterns under cold climate. Water, Air, & Soil Pollution, 1977. doi:10.1007/s11270-014-1977-y
  28. Yan, Y., & Jingcheng, X. (2014). Improving winter performance of constructed wetlands for wastewater treatment in northern China: a review. Wetlands, 243-253. doi:10.1007/s13157-013-0444-7
  29. Yu, J., Yu, H., & Xu, L. (2013). Performance evaluation of various stormwater best management practices. Environmental Science and Pollution Research, 6160-6171. doi:10.1007/s11356-013-1655-4
  30. Zhao, H., & Li, X. (2013). Understanding the relationship between heavy metals in road-deposited sediments and washoff particles in urban stormwater using simulated rainfall. Journal of Hazardous Materials, 267-276. doi:10.1016/j.jhazmat.2012.12.035