DOI QR코드

DOI QR Code

Analysis of pneumatic braking component effects and characteristics of a diesel electric locomotive

디젤전기기관차의 공압제동 영향인자 및 특성 분석

  • Received : 2018.08.30
  • Accepted : 2018.11.02
  • Published : 2018.11.30

Abstract

This paper deals with the braking dynamic behavior of diesel electric locomotive pulling domestic cargo and passenger vehicles. Friction coefficient, pneumatic pressure, and running resistance affecting the braking system were tested. For the friction coefficient, the Dynamo test was performed with reference to UIC 541-4. The results are analyzed by multivariate regression and the relationship between braking force and ititial velocity is presented. The pneumatic pressure were classified into service braking and emergency braking. In order to reflect the characteristics of the brake valve and piping, the pressure rising over time was measured in the vehicle. In order to reflect the external force acting on the vehicle, we carried out the test of EN 14067-4 and presented the second order polynomial formula on a running resistance. The running resistance test results were compared with other countries. The dynamic behavior of a diesel electric locomotive running on a straight flat track based on vehicle resources, friction coefficient, braking pressure, and running resistance is simulated using the time integration presented in EN 14531-1. The simulation results were compared and verified with the vehicle braking test results. The results of this study can be used to analyze the dynamic braking behavior of a train. Also, it is expected that various parameters affecting braking in vehicle design can be analyzed and used as basic data for braking performance improvement.

본 연구에서는 국내 화물 및 여객차량들을 견인하는 디젤전기 기관차의 제동에 따른 동적 거동을 분석하기 위하여 제동장치에 영향을 미치는 마찰계수, 제동압력, 주행저항 등을 시험하였다. 마찰계수는 UIC 541-4를 참고로 Dynamo 시험을 수행하였으며 시험결과는 다변량 회귀분석을 통해 제동하중, 제동초기 속도와의 관계를 분석하여 제시하였다. 제동압력은 상용제동과 비상제동으로 구분하였으며, 제동밸브와 배관의 특성을 반영하기 위하여 시간에 따른 제동압력 변화를 대상 차량에서 측정하였다. 차량에 작용하는 외력을 반영하기 위하여 EN 14067-4의 타행시험을 수행하고 2차 다항식 형태의 주행저항을 제시하였다. 도출한 주행저항을 동일 차종에 대하여 각 국가별로 사용하고 있는 주행저항들과 비교하였다. 차량의 재원, 마찰계수, 제동압력, 주행저항을 바탕으로 직선 평탄 선로를 주행하는 디젤전기기관차의 동적 거동을 EN 14531-1에서 제시된 시간적분을 이용하여 해석하였다. 해석 결과는 상용제동과 비상제동에 대하여 각각 차량의 속도이력 시험결과와 비교 검증하였으며 상당히 합리적인 결과를 도출하였다. 본 연구의 결과들은 철도차량들을 연결하여 운행하는 열차의 동적 거동해석에 활용할 수 있을 뿐 아니라 차량 설계에서 제동에 영향을 미치는 다양한 파라미터들을 분석하고 성능향상의 기초자료로 활용할 수 있을 것으로 기대된다.

Keywords

SHGSCZ_2018_v19n11_541_f0001.png 이미지

Fig. 1. Train formulaiton of (a) single power unit train and (b) multiple power train

SHGSCZ_2018_v19n11_541_f0002.png 이미지

Fig. 2. Locomotive pneumatic brake system

SHGSCZ_2018_v19n11_541_f0003.png 이미지

Fig. 3. Dynamo test bench

SHGSCZ_2018_v19n11_541_f0004.png 이미지

Fig. 4. UIC 541-4 test schematic diagram

SHGSCZ_2018_v19n11_541_f0005.png 이미지

Fig. 5. Instantaneous friction coefficient relation

SHGSCZ_2018_v19n11_541_f0006.png 이미지

Fig. 6. Friction coefficient with 30 kN, initial velocity 165 km/h

SHGSCZ_2018_v19n11_541_f0007.png 이미지

Fig. 7. Dynamo test results (mean friction coefficient)

SHGSCZ_2018_v19n11_541_f0008.png 이미지

Fig. 8. Multivariate regression analysis results

SHGSCZ_2018_v19n11_541_f0009.png 이미지

Fig. 9. Typical brake cylinder pressure rising

SHGSCZ_2018_v19n11_541_f0010.png 이미지

Fig. 9. Brake pressure with full service braking

SHGSCZ_2018_v19n11_541_f0011.png 이미지

Fig. 10. Brake pressure with emergency braking

SHGSCZ_2018_v19n11_541_f0012.png 이미지

Fig. 11. Running resistance measurement setup

SHGSCZ_2018_v19n11_541_f0013.png 이미지

Fig. 12. Running resistance speed history result

SHGSCZ_2018_v19n11_541_f0014.png 이미지

Fig. 13. Running resistance force with curve fitting results

SHGSCZ_2018_v19n11_541_f0015.png 이미지

Fig. 14. Comparison of running resistance test results with other countries' standards

SHGSCZ_2018_v19n11_541_f0016.png 이미지

Fig. 15. Stopping distance calculation procedure

SHGSCZ_2018_v19n11_541_f0017.png 이미지

Fig. 16. Comparison of simulation and experimental results in full service braking

SHGSCZ_2018_v19n11_541_f0018.png 이미지

Fig. 17. Comparison of simulation and experimental results in emergency braking

SHGSCZ_2018_v19n11_541_f0019.png 이미지

Fig. 18. Error analysis in braking

Table 1. Disel-electro locomotive specification

SHGSCZ_2018_v19n11_541_t0001.png 이미지

Table 2. Tread brake system

SHGSCZ_2018_v19n11_541_t0002.png 이미지

Table 3. Dynamo test program

SHGSCZ_2018_v19n11_541_t0003.png 이미지

Table 4. Analysis of variance results

SHGSCZ_2018_v19n11_541_t0004.png 이미지

Table 5. Characteristics of service and emergency braking

SHGSCZ_2018_v19n11_541_t0005.png 이미지

Table 6. Locomotive running resistances

SHGSCZ_2018_v19n11_541_t0006.png 이미지

References

  1. Dong kyun Lee, Sang woo Park, Gunyub Lee, Kinam Kim, Pyung woo Shin, "Brake system characteristics analyis in domestic long freight train configuration", Proc. of the Korean society for railway, pp. 359-362, 2017.
  2. Dong kyun Lee, Sang woo Park, Pyung woo Shin, Gunyub Lee, Hyung Suk Mun, "Characteristic analysis of the freight train brake system for entering the continental railway", Proc. of the Korean society for railway, pp. 487-490, 2018.
  3. Jeong Jun Lee, Jeong Seo Koo, Byung Jin Cho, Hee Seung Na, Hyung Seok Mun, "Analysis and Evaluation of Reduction of Impact Force in a Coupler when a Long Freight Car Brakes", Journal of the Korean Society of Manufacturing Process Engineers, Vol.17, No.1, pp. 130-137, 2018. DOI: https://doi.org/10.14775/ksmpe.2018.17.1.130
  4. Bu-Byoung Kang, Yong Hyeon Cho, "Methods for calculation of stopping and slowing distances and braking performance parameters", Journal of the Korean Society of Mechanical Technology, Vol.17, No.5, pp. 990-997, 2015. DOI: 10.17958/ksmt.17.5.201510.990
  5. Iwnicki S., "Handbook of railway vehicle dynamics", pp. 239-278, 2006. DOI: 10.1201/9781420004892.ch1
  6. Wang F. "Vehicle system dynamics". Beijing: China Railway Publishing House, 1994.
  7. Grag VK, Dukkipati RV. "Dynamics of railway vehicle systems". Academic Press, 1984. DOI: https://doi.org/10.1016/B978-0-12-275950-5.X5001-9
  8. UIC 541-4, "Brakes-Brake with composition brake blocks- General conditions for composite brake block and their application", 2018.
  9. I Kiss1, V G Cioata1, S A Ratiu1, M Rackov and M Pencic, "Statistical experiments using the multiple regression research for prediction of proper hardness in areas of phosphorus cast-iron brake shoes manufacturing", Materials Science and Engineering, 294, 2018. DOI: https://doi.org/10.1088/1757-899X/294/1/012078
  10. EN 14531-1, "Railway applications- methods for calculation of stopping and slowing distances and immobilization braking part 1: general algorithms utilizing mean value calculation for train sets or single vehicles", 2015.
  11. EN 14067-4, "Railway applications- aerodynamics Part 4: Requirements and test procedures for aerodynamics on open track", 2013.
  12. Piotr Lukaszewicz, "Energy Consumption and running time for trains (Modelling of running resistance and driver behiviour based on full scale testing)", Doctoral thesis, 2001.
  13. KS R 9217, "Railway rolling stock - test methods for running resistance", 2000.
  14. UM user manual 8.2, "Chapter 15. Longitudinal train dynamics", 2016.
  15. Korail, "Railway speed constant assessment standard", 2005.