DOI QR코드

DOI QR Code

A Study on Network Operation Structure and DataLink Protocol for Interworking of Ground Network ALL-IP at Next-Military Satellite Communication

차기군위성통신에서 지상망 ALL-IP 연동을 위한 네트워크 운용구조 및 데이터링크 프로토콜 연구

  • Lee, Changyoung (Software Team(Communication), Hanwha Systems) ;
  • Kang, Kyungran (Department of Software, Ajou University) ;
  • Shim, Yong-hui (The 2nd R&D Institute Satellite Communications PMO, Agency for Defense Development)
  • 이창영 (한화시스템(주) SW팀(통신)) ;
  • 강경란 (아주대학교 소프트웨어학과) ;
  • 심용희 (국방과학연구소 제2기술연구본부 위성통신체계개발단)
  • Received : 2018.08.09
  • Accepted : 2018.11.26
  • Published : 2018.12.05

Abstract

The military satellite communication of ROK military, ANASIS is designed for analog data such as voice and streaming data. ANASIS cannot fully support ALL-IP communications due to its long propagation delay. The next generation satellite communication system is being designed to overcome the limitation. Next generation satellite communications system considers both high-speed and low-speed networks to support various operating environment. The low-speed satellite supports both broadband and narrow-band communication. This network works as the infrastructure for of wide-area internetworking over multiple AS's in the terrestrial network. It requires minimum satellite frequency and minimum power and works without PEP and router. In this paper, we propose a network operation structure to enable the inter-operation between high and low-speed satellite networks. In addition, we propose a data link protocol for low speed satellite networks.

Keywords

GSGGBW_2018_v21n6_826_f0002.png 이미지

Fig. 1. Broadband communication

GSGGBW_2018_v21n6_826_f0003.png 이미지

Fig. 4. ANASIS satellite frequency operating method

GSGGBW_2018_v21n6_826_f0004.png 이미지

Fig. 5. DVB-S2/RCS system[15]

GSGGBW_2018_v21n6_826_f0005.png 이미지

Fig. 6. Systems running on DVB

GSGGBW_2018_v21n6_826_f0006.png 이미지

Fig. 7. DVB network structure[10,11]

GSGGBW_2018_v21n6_826_f0007.png 이미지

Fig. 8. NCW network in US army

GSGGBW_2018_v21n6_826_f0008.png 이미지

Fig. 9. MF-TDMA frame structure

GSGGBW_2018_v21n6_826_f0009.png 이미지

Fig. 10. WIN-T 3Layer routing architecture

GSGGBW_2018_v21n6_826_f0010.png 이미지

Fig. 11. Satellite PHY layer

GSGGBW_2018_v21n6_826_f0011.png 이미지

Fig. 12. Relay network of IP data

GSGGBW_2018_v21n6_826_f0012.png 이미지

Fig. 13. Protocol conversion for traffic channel

GSGGBW_2018_v21n6_826_f0013.png 이미지

Fig. 14. Narrowband satellite network structure

GSGGBW_2018_v21n6_826_f0014.png 이미지

Fig. 15. Single network/multi network structure

GSGGBW_2018_v21n6_826_f0015.png 이미지

Fig. 16. Network structure in single network

GSGGBW_2018_v21n6_826_f0016.png 이미지

Fig. 17. Wide area single network[16]

GSGGBW_2018_v21n6_826_f0018.png 이미지

Fig. 18. Hub/Spoke network in a single network

GSGGBW_2018_v21n6_826_f0019.png 이미지

Fig. 19. Mesh network in a single network

GSGGBW_2018_v21n6_826_f0020.png 이미지

Fig. 20. Network structure in multi-network

GSGGBW_2018_v21n6_826_f0021.png 이미지

Fig. 22. Operating network operation(example)

GSGGBW_2018_v21n6_826_f0023.png 이미지

Fig. 23. IP packet processing flow in multi-network

GSGGBW_2018_v21n6_826_f0024.png 이미지

Fig. 24. Router interworking in multi-network structure

GSGGBW_2018_v21n6_826_f0025.png 이미지

Fig. 25. Switch interworking in multi-network structure

GSGGBW_2018_v21n6_826_f0026.png 이미지

Fig. 27. Data link protocol frame structure

GSGGBW_2018_v21n6_826_f0027.png 이미지

Fig. 28. Protocol header description

GSGGBW_2018_v21n6_826_f0028.png 이미지

Fig. 29. IP packet flow at the terminal

GSGGBW_2018_v21n6_826_f0029.png 이미지

Fig. 30. PDU format 1 – SDU only

GSGGBW_2018_v21n6_826_f0030.png 이미지

Fig. 31. PDU format 2 – SDU fragmentation start

GSGGBW_2018_v21n6_826_f0031.png 이미지

Fig. 32. PDU format 3 – fragmentation continue

GSGGBW_2018_v21n6_826_f0032.png 이미지

Fig. 33. PDU format 4 – SDU fragmentation end

GSGGBW_2018_v21n6_826_f0033.png 이미지

Fig. 34. PDU format 5

GSGGBW_2018_v21n6_826_f0034.png 이미지

Fig. 36. PDU format 7

GSGGBW_2018_v21n6_826_f0035.png 이미지

Fig. 37. PDU format 8

GSGGBW_2018_v21n6_826_f0036.png 이미지

Fig. 38. Packet fragmentation algorithm

GSGGBW_2018_v21n6_826_f0037.png 이미지

Fig. 39. Data integrity algorithm through FSN/SSN

GSGGBW_2018_v21n6_826_f0038.png 이미지

Fig. 40. Fragmentation combining algorithm

GSGGBW_2018_v21n6_826_f0039.png 이미지

Fig. 41. Satellite data link protocol test bed

GSGGBW_2018_v21n6_826_f0040.png 이미지

Fig. 42. 128 kbps / 64 byte IP packet throughput

GSGGBW_2018_v21n6_826_f0041.png 이미지

Fig. 43. 128 kbps / 1500 byte IP packet throughput

GSGGBW_2018_v21n6_826_f0042.png 이미지

Fig. 44. 256 kbps / 64 byte IP packet throughput

GSGGBW_2018_v21n6_826_f0043.png 이미지

Fig. 45. 256 kbps / 1500 byte IP packet throughput

GSGGBW_2018_v21n6_826_f0044.png 이미지

Fig. 46. 128~512 kbps / 64~1500 byte IP packet receive rate

GSGGBW_2018_v21n6_826_f0045.png 이미지

Fig. 47. Packet receive rate graph by data rate

GSGGBW_2018_v21n6_826_f0046.png 이미지

Fig. 48. Packet receive rate graph by packet size

GSGGBW_2018_v21n6_826_f0047.png 이미지

Fig. 49. Wide area network with ALL-IP in singlenetwork / multi-network structure[19]

GSGGBW_2018_v21n6_826_f0048.png 이미지

Fig. 2. ANASIS terminal

GSGGBW_2018_v21n6_826_f0049.png 이미지

Fig. 21. Wide area multi-network[16]

GSGGBW_2018_v21n6_826_f0050.png 이미지

Fig. 26. PC(Terminal) interworking in multi-network

GSGGBW_2018_v21n6_826_f0051.png 이미지

Fig. 35. PDU format 6

GSGGBW_2018_v21n6_826_f0052.png 이미지

Fig. 3. Satellite control center

Table 1. Simulation parameters

GSGGBW_2018_v21n6_826_t0001.png 이미지

Table 2. Packet transmission rate table by data rate

GSGGBW_2018_v21n6_826_t0002.png 이미지

Table 3. Packet transmission rate table by packet size

GSGGBW_2018_v21n6_826_t0003.png 이미지

References

  1. H. J. Noh, K. C. Go, K. H. Lee, J. H. Kim, J. S. Lim, Y. J. Song, "Resource Allocation and IP Networking for Next Generation Military Satellite Communications System," The Journal of Korean Institute of Communications and Information Sciences Vol. 38C No. 11, 2013. 11.
  2. Defense Agency for Technology and Quality, "Defense Science & Technology Development Trend and Level," DTaQ Defence Science and Technology Survey Book1 Command & Control, p. 206, p. 209, 2016. 12.
  3. Ministry of National Defense, "2016 Defense White Paper," Minister of National Defense, Republic of Korea, p. 91, 2016.
  4. Defense Acquisition Program Administration, "Deliberation and Resolution of System Development Basic Plan," The 82nd Defense Acquisition Program Promotion Committee), 2014.
  5. Defense Acquisition Program Administration, "Information Disclosure - The Next Military Satellite Communication System(R & D)," http://www.dapa.go.kr/(2017.10.18.).
  6. J. S. Hwang, H. H. Baek, "Technology / Development Trends of Military Information and Communication Equipment for Network-Centric Warfare," Korea Electromagnetic Engineering Society: The Proceedings of the Korea Electromagnetic Engineering Society 19(4), pp. 15-32, 2008. 7.
  7. J. Wiss and R. Gupta, "The WIN-T MF-TDMA Mesh Network Centric Waveform," in Proc. IEEE Military Commun. Conf.(MILCOM 2007), pp. 1-6, Orlando, U.S.A., Oct., 2007.
  8. Defense Acquisition Program Administration, [Military Column] Integrated Routing Technology for Satellite and Terrestrial Networks, http://blog.naver.com/dapapr/ (2017.10.10.).
  9. ETSI TR 101 545-5, DVB-RCS2; Part5 Guidelines for the Implementation and Use of TS 101 545-3, April, 2014.
  10. ETSI TS 101 545-1, DVB; DVB-RCS2; Part1: Overview and System Level Specification, April, 2014.
  11. ETSI TS 101 545-3, DVB; DVB-RCS2; Part3: Higher Layers Satellite, April, 2014.
  12. J. J. Choi, B. G. Jo, K Y. Kim, K. Y. Park, J. H. Lee, J. H. Han, Yeesoo Han, "Dynamic Routing Interworking Method for Integrating Terrestrial Wireless Backbone Network and Satellite Communications System," Journal of the Korea Institute of Military Science and Technology Vol. 19, No. 5, pp. 645-653, 2016. 10. https://doi.org/10.9766/KIMST.2016.19.5.645
  13. U.S. Army, "System Overview Guide Warfighter Information Network - Tactical(WIN-T) Increment 2," 2012. 6.
  14. Syed R. Ali, Richard S. Wexler, Army Warfighter Information Network-Tactical(WIN-T) Theory of Operation, MILCOM 2013, pp. 1453-1461, 2013. 11.
  15. J. S. Lee, "Frequency Hopping Resource Allocation Algorithm for Supporting Multiple Bandwidth Terminals in MF-TDMA Networks," Ajou University Department of Dependable Software, 2015. 2.
  16. C. Y. Lee, J. H. Jun, S. H. Lee, H. G. Seo, H. S. Ko, J. H. Han, "Design and Implementation of Interference Rejection Function Using Digital Satellite Transponder," The Journal of Korean Institute of Communications and Information Sciences Vol. 39A No. 1, 2014. 1.
  17. K. B. Im, K. K. Kang, Y. J. Cho, "K-Hop Flooding -based Multicast Considering the Limited Mobility of Mobile Nodes and Intermittent Disconnection," The Journal of Korean Institute of Communications and Information Sciences Vol. 35 No. 6, 2010. 6.
  18. C. O. Kim, K. K. Kang, Y. J. Cho, "A Distributed Multicast Group Key Management Scheme for a Hierarchically Structured Network," Korea Information Science Society : Journal of KISS : Information Networking 38(1), pp. 22-32, 2011. 2.
  19. C. Kim, S. H. Shin, "OPNET Basic Foundation," Hongrling Publishing Company, 2013.