Figure 1. Discharge potentials and specific capacity of some of the most common (a) cathodes and (b) anodes (reproduced from[4]).
Figure 2. Layered lithium transition metal oxide structure of LiCoO2 (red: oxygen, blue: cobalt, green: lithium).
Figure 3. NCM product overview (reproduced from[21]).
Figure 4. Spinel structure of LiMn2O4 (red: oxygen, purple: manganese, green: lithium).
Figure 5. Olivine structure of LiFePO4 (red: oxygen, light purple: phosphorus, brown yellow: iron, green: lithium).
Figure 6. (a) TEM images of LTO/C, (b) high-resolution images of the areas marked in red dashed circles, (c) cycling performance of LTO anode at a 0.5 C rate, and (d) rate capabilities of LTO anode (reproduced from[64]).
Figure 7. (a) TEM image with inset showing SAED patterns of CoO-Co nanocomposite, (b) Cycling performance of CoO-Co nanocomposite, and (c) Discharge-charge profile of CoO-Co anode at current density of 500 mA g-1 (reproduced from[66]).
Table 1. Properties of Cathode Materials Used in Commercial Lithium Ion Batteries
Table 2. Properties of Anode Materials Used in Commercial Lithium Ion Batteries
References
- M. Broussely, P. Biensan, and B. Simon, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochim. Acta, 45, 3-22 (1999). https://doi.org/10.1016/S0013-4686(99)00189-9
- N. Nitta, F. Wu, and J. T. Lee, Li-ion battery materials: present and future, Mater. today, 18, 252-264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- M. S. Whittingham and F. R. Gamble Jr, The lithium intercalates of the transition metal dichalcogenides, Mater. Res. Bull., 10, 363-371 (1975). https://doi.org/10.1016/0025-5408(75)90006-9
- M. S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 192, 1126-1127 (1976). https://doi.org/10.1126/science.192.4244.1126
-
B. M. L. Rao, D. J. Eustace, and J. A. Shropshire, The Li/
$TiS_2$ cell with LiSCN electrolyte, J. Appl. Electrochem., 10, 757-763 (1980). https://doi.org/10.1007/BF00611279 -
T. Ohzuku and A. Ueda, Solid-state redox reactions of
$LiCoO_2$ ($R_{3}^{-}m$ ) for 4 volt secondary lithium cells, J. Electrochem. Soc., 141, 2972-2977 (1994). https://doi.org/10.1149/1.2059267 -
J. N. Reimers and J. R. Dahn, Electrochemical and in situ x-ray diffraction studies of lithium intercalation in
$Li_xCoO_2$ , J. Electrochem. Soc., 139, 2091-2097 (1992). https://doi.org/10.1149/1.2221184 -
A. VanderVen, M. K. Aydinol, and G. Ceder, First-principles evidence for stage ordering in
$Li_xCoO_2$ , J. Electrochem. Soc., 145, 2149-2155 (1998). https://doi.org/10.1149/1.1838610 -
X. Dai, A. Zhou, J. Xu, B. Yang, L. Wang, and J. Li, Superior electrochemical performance of
$LiCoO_2$ electrodes enabled by conductive$Al_2O_3$ -doped ZnO coating via magnetron sputtering, J. Power Sources, 298, 114-122 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.031 -
S. Myung, N. Kumagai, S. Komaba, and H. Chung, Effects of Al doping on the microstructure of
$LiCoO_2$ cathode materials, Solid State Ionics, 139, 47-56 (2001). https://doi.org/10.1016/S0167-2738(00)00828-6 -
S. Madhavi and Rao GS, Effect of Cr dopant on the cathodic behavior of
$LiCoO_2$ , Electrochimic. Acta, 48, 219-226 (2002). https://doi.org/10.1016/S0013-4686(02)00594-7 -
S. Huang, Z. Wen, X. Yang, Z. Gu, and X. Xu, Improvement of the high-rate discharge properties of
$LiCoO_2$ with the Ag additives, J. Power Sources, 148, 72-77 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.002 -
J. R. Dahn, U. V. Sacken, and C. A. Michal, Structure and electrochemistry of
$Li_{1{\pm}y}NiO_2$ and a new$Li_2NiO_2$ phase with the Ni$(OH)_2$ structure, Solid State Ionics, 44, 87-97 (1990). https://doi.org/10.1016/0167-2738(90)90049-W -
M. Broussely, F. Perton, P. Biensan, J. M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, and J. P. Peres,
$Li_xNiO_2$ , a promising cathode for rechargeable lithium batteries, J. Power Sources, 54, 109-114 (1995). https://doi.org/10.1016/0378-7753(94)02049-9 -
S. P. Lin, K. Z. Fung, Y. M. Hon, and M. H. Hon, Effect of Al Addition on Formation of Layer-Structured
$LiNiO_2$ , J. Solid State Chem., 167, 97-106 (2002). https://doi.org/10.1006/jssc.2002.9624 -
Y. Nishida, K. Nakane, and T. Satoh, Synthesis and properties of gallium-doped
$LiNiO_2$ as the cathode material for lithium secondary batteries, J. Power Sources, 68, 561-564 (1997). https://doi.org/10.1016/S0378-7753(97)02535-4 -
A. R. Armstrong and P. G. Bruce, Synthesis of layered
$LiMnO_2$ as an electrode for rechargeable lithium batteries, Nature, 381, 499-500 (1996). https://doi.org/10.1038/381499a0 -
A. R. Armstrong, A. D. Robertson, and P. G. Bruce, Structural transformation on cycling layered
$Li(Mn_{1-y}Co_y)O_2$ cathode materials, Electrochimi. Acta, 45, 285-294 (1999). https://doi.org/10.1016/S0013-4686(99)00211-X - S. R. Gowda, K. G. Gallagher, J. R. Croy, M. Bettge, M. M. Thackeray, and M. Balasubramanian, Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells, Phys. Chem. Chem. Phys., 16, 6898-6902 (2014). https://doi.org/10.1039/c4cp00764f
- X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification, J. Power Sources, 251, 38-54 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.029
- F. Schipper, E. M. Erickson, C. Erk, J. Y. Shin, F. F. Chesneau, and D. Aurbach, Review-recent advances and remaining challenges for lithium ion battery cathodes, J. Electrochem. Soc., 164 A6220-A6228 (2017). https://doi.org/10.1149/2.0351701jes
- D. Y. Wan, Z. Y. Fan, Y. X. Dong, E.baasanjav, H. B. Jun, B. Jin, E. M. Jin, and S. M. Jeong, Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries, J. Nanomater., 2018, 8082502 (2018).
- M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mat. Res. Bull., 18, 461-472 (1983). https://doi.org/10.1016/0025-5408(83)90138-1
-
G. Amatucci and J. M. Tarascon, Optimization of Insertion Compounds Such as
$LiMn_2O_4$ for Li-Ion Batteries, J. Electrochem. Soc., 149, K31-K46 (2002). https://doi.org/10.1149/1.1516778 -
A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. Goodenough, Effect of Structure on the
$Fe^{3+}/Fe^{2+}$ Redox Couple in Iron Phosphates, J. Electrochem. Soc., 144, 1609-1613 (1997). https://doi.org/10.1149/1.1837649 -
P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, A. Mauger, and F. Gendron, C. M. Julien, Nonstoichiometric
$LiFePO_4$ : Defects and Related Properties, Chem. Mater., 21, 1636-1644 (2009). https://doi.org/10.1021/cm803408y - J. Chen, M. J. Vacchio, S. Wang, N. Chernova, P. Y. Zavalij, and M. S. Whittingham, The hydrothermal synthesis and characterization of olivine and related compounds for electrochemical applications, Solid State Ionics, 178, 1676-1693 (2008). https://doi.org/10.1016/j.ssi.2007.10.015
-
T. Shiratsuchi, S. Okada, T. Doi, and J. I. Yamaki, Cathodic performance of
$LiMn_{1-x}M_xPO_4$ (M = Ti, Mg and Zr) annealed in an inert atmosphere, Electrochim. Acta, 54, 3145-3151 (2009). https://doi.org/10.1016/j.electacta.2008.11.069 -
V. H. Nguyen, D. H. Lee, S. Y. Baek, H. B. Gu, and Y. H. Kim, Silicon and its effect on the electrochemical properties of
$Li_3V_2(PO_4)_3$ cathode material, Ceram. Int., 44, 12504-12510 (2018). https://doi.org/10.1016/j.ceramint.2018.04.043 -
M. Chen, L. L. Shao, H. B. Yang, T. Z. Ren, G. Du, and Z. Y. Yuan, Vanadium-doping of
$LiFePO_4$ /carbon composite cathode materials synthesized with organophosphorus source, Electrochim. Acta, 167, 278-286 (2015). https://doi.org/10.1016/j.electacta.2015.03.185 -
J. C. Zheng, B. Zhang, and Z. H. Yang, Novel synthesis of
$LiVPO_4F$ cathode material by chemical lithiation and postannealing, J. Power Sources, 202, 380-383 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.144 -
R. Domink, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik,
$Li_2MnSiO_4$ as a potential Li-battery cathode material, J. Power Sources, 174, 457-461 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.188 -
Z. L. Gong, Y. X. Li, and Y. Yang, Synthesis and electrochemical performance of
$Li_2CoSiO_4$ as cathode material for lithium ion batteries, J. Power Sources, 174, 524-527 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.250 -
A. Sobkowiak, M. R. Roberts, R. Younesi, T. Ericsson, L. Haggstrom, C. W. Tai, A. M. Andersson, K. Edstrom, T. Gustafsson, and F. Bjorefors, Understanding and Controlling the Surface Chemistry of
$LiFeSO_4F$ for an Enhanced Cathode Functionality, Chem. Mater., 25, 3020-3029 (2013). https://doi.org/10.1021/cm401063s - J. Li, L. Xing, Z. Wang, W. Tu, X. Yang, X. Yang, Y. Lin, Y. Liao, M. Xu, and W. Li, Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive, RSC Adv., 8, 25794-25801 (2018). https://doi.org/10.1039/C8RA03852J
- Q. Wang, Z. Wen, J. Jin, J. Guo, X. Huang, J. Yang, and C. Chen, A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries, Chem. Commun., 52, 1637-1640 (2016). https://doi.org/10.1039/C5CC08279J
- X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan, Z. Yu, J. Qiu, and Y. Yang, Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery, J. Mater. Chem. A, 2, 11660-11665 (2014). https://doi.org/10.1039/C4TA01709A
- M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 10, 725-763 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
- K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, and G. Ceder, Lithium diffusion in graphitic carbon, J. Phys. Chem. Lett., 1, 1176-1180 (2010). https://doi.org/10.1021/jz100188d
- J. Liu and D. Xue, Hollow Nanostructured Anode Materials for Li-Ion Batteries, Nanoscale Res. Lett., 5, 1525-1534 (2010). https://doi.org/10.1007/s11671-010-9728-5
- B. J. Landi, M. J. Ganter, C. D. Cress, R. A. Dileo, and R. P. Yaffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638-654 (2009). https://doi.org/10.1039/b904116h
-
C. C. Li and Y. W. Wang, Importance of binder compositions to the dispersion and electrochemical properties of water-based
$LiCoO_2$ cathodes, J. Power Sources, 227, 204-210 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.025 - S. Boyanov, K. Annou, C. Villevieille, M. Pelosi, D. Zitoun, and L. Monconduit, Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries, Ionics, 14, 183-190 (2008). https://doi.org/10.1007/s11581-007-0170-3
- W. Wang, Z. Favors, C. Li, C. Liu, R. Ye, C. Fu, K. Bozhilov, J. Guo, M. Ozkan, and C. S. Ozkan, Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries, Sci Rep., 7, 44838 (2017). https://doi.org/10.1038/srep44838
- C. de las Casas and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, 208, 74-85 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.013
- Y. Liu, V.I. Artyukhov, M. Liu, A. R. Harutyunyan, and B.I. Yakobson, Feasibility of lithium storage on graphene and its derivatives, J. Phys. Chem. Lett., 4, 1737-1742 (2013). https://doi.org/10.1021/jz400491b
- J. Yang, M. Winter, and J. O. Besenhard, Small particle size multiphase Li-alloy anodes for lithium-ion batteries, Solid State Ionics 90, 281-287 (1996). https://doi.org/10.1016/S0167-2738(96)00389-X
- R. A. Huggins and B. A. Boukamp, US Patent 4,436,796 (1984).
- C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39, 3115-3141 (2010). https://doi.org/10.1039/b919877f
- E. N. Attia, F. M. Hassan, M. Li, R. Batmaz, A. Elkamel, and Z. Chen, Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries, J. Mater. Chem. A, 5, 24159-24167 (2017). https://doi.org/10.1039/C7TA08369F
- X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application, J. Mater. Chem. A, 1, 165-182 (2013). https://doi.org/10.1039/C2TA00437B
- J. D. Ocon, J. K. Lee, and J. Lee, High energy density germanium anodes for next generation lithium ion batteries, Appl. Chem. Eng., 25, 1-13 (2014). https://doi.org/10.14478/ace.2014.1008
- J. He, Y. Wei, T. Zhai, and H. Li, Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries, Mater. Chem. Front., 2, 437-455 (2018). https://doi.org/10.1039/C7QM00480J
- C. J. Wen, B. A. Boukamp, R. A. Huggisn, and W. Weppner, Thermodynamic and Mass Transport Properties of "LiAl", J. Electrochem. Soc., 126, 2258-2266 (1979). https://doi.org/10.1149/1.2128939
- R. A. Huggins, Advanced Batteries. Materials Science Aspects, Springer US, MA, USA (2009).
- M. G. Jeong, M. Islam, H. L. Du, Y. S. Lee, H.H. Sun, W. Choi, J. K. Lee, K. Y. Chung, and H. G. Jung, Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries, Electrochim. Acta, 209, 299-307 (2016). https://doi.org/10.1016/j.electacta.2016.05.080
- Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Tin-based amorphous oxide: A High-capacity lithium-ion-storage material, Science, 276, 1395-1397 (1997). https://doi.org/10.1126/science.276.5317.1395
- X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application, J. Mater. Chem. A, 1, 165-182 (2013). https://doi.org/10.1039/C2TA00437B
-
M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, Preparation and ectrochemical properties of
$SnO_2$ nanowires for application in lithium-ion batteries, Angew. Chem., 119, 764-767 (2007). https://doi.org/10.1002/ange.200603309 -
L. Yu, D. Cai, H. Wang, and M. M. Titirici, Hydrothermal synthesis of
$SnO_2$ and$SnO_2@C$ nanorods and their application as anode materials in lithium-ion batteries, RSC Adv., 3, 17821-17826 (2013). -
P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki,
$TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2, 45-59 (2010). https://doi.org/10.1039/B9NR00131J -
Y. Zhang, Q. Fu, Q. Xu, X. Yan, R. Zhang, Z. Duo, Y. Wei, D. Zhang, and G. Chen, Improved electrochemical performance of nitrogen doped
$TiO_2$ -B nanowires as anode materials for Li-ion batteries, Nanoscale, 7, 12215-12224 (2015). https://doi.org/10.1039/C5NR02457A -
J. Wang, X. M. Liu, H. Yang, and X. D. Shen, Characterization and electrochemical properties of carbon-coated
$Li_4Ti_5O_{12}$ prepared by a citric acid sol-gel method, J. Alloys Compd., 509, 712-718 (2011). https://doi.org/10.1016/j.jallcom.2010.07.215 -
M. Z. Kong, W. L. Wang, J. Y. Park, and H. B. Gu, Synthesis and electrochemical properties of a carbon-coated spinel
$Li_4Ti_5O_{12}$ anode material using soybean oil for lithium-ion batteries, Mater. Lett., 146, 12-15 (2015). https://doi.org/10.1016/j.matlet.2015.01.155 -
Y. Zhu, Q. Wang, X. Zhao, and B. Yuan, Cross-linked porous
${\alpha}$ -$Fe_2O_3$ nanorods as high performance anode materials for lithium ion batteries, RSC Adv., 6, 97385-97390 (2016). https://doi.org/10.1039/C6RA22034G - Y. Qin, Q. Li, J. Xu, X. Wang, G. Zhao, C. Liu, X. Yan. Y. Long, S. Yan, and S. Li, CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries, Electrochim. Acta, 224, 90-95 (2017). https://doi.org/10.1016/j.electacta.2016.12.040
-
T. Perez, R. L. Lopez, J. L. Nava, I. Lazaro, G. Velasco. R. Cruz, and I. Rodriguez, Electrochemical oxidation of cyanide on 3D Ti-
$RuO_2$ anode using a filter-press electrolyzer, Chemosphere, 177, 1-6 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.136
Cited by
- 에너지저장장치용 폐리튬이온배터리 성능 진단 및 복원 기술동향 vol.30, pp.3, 2019, https://doi.org/10.14478/ace.2019.1034
- Hierarchical Microtubes Constructed by MoS2 Nanosheets with Enhanced Sodium Storage Performance vol.14, pp.11, 2020, https://doi.org/10.1021/acsnano.0c06250
- Effect of soybean oil as a carbon source on the electrochemical property of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery vol.30, pp.6, 2018, https://doi.org/10.1007/s42823-020-00133-1
- Towards prediction of ordered phases in rechargeable battery chemistry via group-subgroup transformation vol.7, pp.1, 2021, https://doi.org/10.1038/s41524-021-00653-y