Figure 1. Extraction yield and total flavonoids of active ingredient from the wheat sprout using ultrasound-assisted extraction.
Figure 2. Response surface for yield of the wheat sprout at constant values as a function of time, ethanol concentration and power in UASE.
Figure 3. Perturbation plot for the effect of variables on extraction yield.
Figure 4. Response surface for total flavonoids of the wheat sprout at constant values as a function of time, ethanol concentration and power in UASE.
Figure 5. Perturbation plot for the effect of variables on total flavonoids.
Figure 6. Scatter plot of extraction yield and total flavonoids content from wheat sprout in UASE process.
Figure 7. Optimization graph of response surface for yield and total flavonoids of the wheat sprout in UASE.
Table 1. Basic Experiment Setup of Ultrasound-assisted Extraction
References
- N. C. Cook and S. Samman, Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996). https://doi.org/10.1016/0955-2863(95)00168-9
- A. H. Clifford and S. L. Cuppett, Anthocyanins-nature, occurrence and dietary burden, J. Sci. Food Agric., 80, 1063-1072 (2000). https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1063::AID-JSFA605>3.0.CO;2-Q
- B. Tudek, B. Peryt, J. Miloszewska, T. Szymczyk, M. Przybyszewska, and P. Janik, The effect of wheat sprout extract on benzo(a)pyrene and 7,2-dimethylbenz(a) anthracene activity, Neoplasma, 35(5), 515-523 (1998).
- O. S. Aydos, A. Avcl, T. Ozkan, A. Karadag, E. Gurleyik, B. Altinok, and A. Sunguroglu, Antiproliferative, apoptotic and antioxidant activities of wheat grass (Triticum aestivum L.) extract on CML (k562) cell line, Turk. J. Med. Sci., 41(4), 657-663 (2011).
- G. Falcioni, D. Fedeli, L. Tiano, I. Calzuola, L. Mancinelli, V. Marsili, and G. Gianfranceschi, Antioxidant activity of wheat sprouts extract in vitro: Inhibition of DNA oxidative damage, J. Food Sci., 67(8), 2918-2922 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb08838.x
- S. Yavari, A. Malakahmad, N. B. Sapari, and S. Yavari, Sorption properties optimization of agricultural wastes-derived biochars using response surface methodology, Process Saf. Environ. Prot., 109, 509-519 (2017). https://doi.org/10.1016/j.psep.2017.05.002
- A. A. D'Archivio and M. A. Maggi, Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids, Food Chem., 219, 414-418 (2017). https://doi.org/10.1016/j.foodchem.2016.09.167
- G. I. Danmaliki, T. A. Saleh, and A. A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, J. Ind. Eng. Chem., 313, 993-1003 (2017).
- H. S. Jeong, H. Joo, and J.-H. Lee, Antioxidant activity of dietary fibers from tubers and stalks of sweet potato and their anti-cancer effect in human colon cancer, Appl. Chem. Eng., 24(5), 525-529 (2013).
- N. C. Cook and S. Samman, Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem., 7, 66-76 (1996). https://doi.org/10.1016/0955-2863(95)00168-9
- S. Beck and J. Stengel, Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L, Phytochemistry, 130, 201-206 (2016). https://doi.org/10.1016/j.phytochem.2016.05.005
- T. Belwal, P. Dhyani, I. D. Bhatt, R. S. Rawal, and V. Pande, Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM), Food Chem., 207, 115-124 (2016). https://doi.org/10.1016/j.foodchem.2016.03.081
- R. F. Yanga, L. L. Genga, H. Q. Lub, and X. D. Fanc, Ultrasound-synergized electrostatic field extraction of total flavonoids from Hemerocallis citrina baroni, Ultrason. Sonochem., 34, 571-579 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.037
- S. A. Park, J. H. Ha, and S. N. Park, Antioxidative activity and component analysis of Broussonetia kazinoki SIEB extracts, Appl. Chem. Eng., 24(2), 177-183 (2013).
- M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199-1200 (1958). https://doi.org/10.1038/1811199a0
Cited by
- 마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: CCD-RSM을 이용한 최적화 vol.32, pp.2, 2021, https://doi.org/10.14478/ace.2021.1005