Figure 1. Schematic diagram of cone calorimeter equipment[17].
Figure 2. Oxygen (O2) consumption rate curves of cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.
Figure 3. The smoke production rate (m2/s) curves of cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.
Figure 4. CO concentration (ppm) curves of cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.
Figure 5. Emission concentration (ppm) curves of CO2 from cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.
Figure 6. O2 depletion (%) curves of cypress specimens painted with 15 wt% solutions of boron compounds during cone calorimeter test.
Table 1. Specification of Cypress Specimens Painted with 15 wt% Boron Compounds Solutions
Table 2. Combustion Properties of Cypress Specimens Painted with 15 wt% Solutions of Boron Compounds During Cone Calorimeter Test
Table 3. Smoke Performance Index of Cypress Specimens Painted with 15 wt% Boron Compounds Solutions During Cone Calorimeter Test
Table 4. Smoke Growth Index at 50 kW/m2 External Heat Flux
Table 5. Smoke Intensity at 50 kW/m2 External Heat Flux
References
- P. Bektha and P. Neimz, Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood, Holzforschung, 57, 539-546 (2003).
- P. Zhao, C. Guo, and L. Li, Exploring the effect of melamine pyrophosphate and aluminum hypophosphite on flame retardant wood flour/polypropylene composites, Constr. Build. Mater., 170, 193-199 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.074
- J. Jiang, J. Z. Li, J. Hu, and D. Fan, Effect of nitrogen phosphorus flame retardants on thermal degradation of wood, Constr. Build. Mater., 24, 2633-2637 (2010). https://doi.org/10.1016/j.conbuildmat.2010.04.064
- T. Jiang, X. Feng, Q. Wang, Z. Xiao, F. Wang, and Y. Xie, Fire performance of oak modified with N-methylol resin and methylolated guanylurea phosphate/boric acid-based fire retardant, Constr. Build. Mater., 72, 1-6 (2014). https://doi.org/10.1016/j.conbuildmat.2014.09.004
- A. M. Pereyra and C. A. Giudic, Flame-retardant impregnants for woods based on alkaline silicates, Fire Saf. J., 44, 497-503 (2009). https://doi.org/10.1016/j.firesaf.2008.10.004
- R. H. White and M. A. Dietenberger, Fire safety of wood construction. In: R. J. Ross (ed.), Wood Handbook: Wood as an Engineering Material, Ch. 18, USDA Forest Service, WI, USA (2010).
- D. A. Purser, Toxic assessment of combustion products, in: P. J. DiNenno et al. (Eds.), The SFPE Handbook of Fire Protection Engineering (3rd ed.), pp. 83-171, National Fire Protection Association, MA, USA (2002).
- A. Ernst and J. D. Zibrak, Carbon monoxide poisoning, N. Engl. J. Med., 339, 1603-1608 (1998). https://doi.org/10.1056/NEJM199811263392206
- R. Von Burg, Toxicology update, J. Appl. Toxicol., 19, 379-386. USA (1999). https://doi.org/10.1002/(SICI)1099-1263(199909/10)19:5<379::AID-JAT563>3.0.CO;2-8
- U. C. Luft, Aviation Physiology: the Effects of Altitude in Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
- N. Ikeda, H. Takahashi, K. Umetsu, and T. Suzuki, The course of respiration and circulation in death by carbon dioxide poisoning, Forensic Sci. Int., 41, 93-99 (1989). https://doi.org/10.1016/0379-0738(89)90240-5
- D. A. Purser, A bioassay model for testing the incapacitating effects of exposure to combustion product atmospheres using cynomolgus monkeys, J. Fire Sci., 2, 20-26 (1984). https://doi.org/10.1177/073490418400200104
- V. Babrauskas, Development of the cone calorimeter - a bench-scale heat release rate apparatus based on oxygen consumption. In: S. J. Grayson and D. A. Smith (eds.) New Technology to Reduce Fire Losses and Costs, pp. 78-87, Elsevier Appied Science Publisher, London, UK (1986).
- M. M. Hirschler, Fire performance of organic polymers, thermal decomposition and chemical composition, ACS Symp. Ser., 797, 293-306 (2001).
- C. H. Lee, C. W. Lee, J. W. Kim, C. K. Suh, and K. M. Kim, Organic phosphorus-nitrogen compounds, manufacturing method and compositions of flame retardants containing organic phosphorus-nitrogen compounds, Korean Patent 2011-0034978 (2011).
- E. Jin and Y. J. Chung, Fire risk of wood treated with boron compounds by combustion test, Fire Sci. Eng., 32(3), 19-26 (2018). https://doi.org/10.7731/KIFSE.2018.32.3.019
- ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-Part 1: Heat release rate(cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
- R. Bergman, Drying and control of moisture content and dimensional changes, In: R. J. Ross (ed.), Wood Handbook-Wood as an Engineering Material, Ch. 13, USDA Forest Service, WI, USA (2010).
- V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, MA, USA (2008).
- T. Balakrishnan, G. Bhagannaryana, and K. Ramamurthi, Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal, Spectrochim. Acta A, 71, 578-583 (2008). https://doi.org/10.1016/j.saa.2008.01.026
- O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Flame retardant treated plyood, Polym. Degrad. Stab., 64, 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
- Q. Wang, J. Li, and J. E. Winady, Chemical mechanism of fire retardance of boric acid on wood, Wood Sci. Technol., 38, 375-389 (2004).
- M. Hagen, J. Hereid, M. A. Delichtsios, J. Zhang, and D. Bakirtzis, Flammability assesment of fire-retarded nordic spruce wood using thermogravimetric analyses and cone calorimetry, Fire Saf. J., 44, 1053-1069 (2009). https://doi.org/10.1016/j.firesaf.2009.07.004
- B. Wang, Q. Tang, N. Hong, L. Song, L. Wang, Y. Shi, and Y. Hu, Effect of cellulose acetate butyrate microencapsulated ammonium polyphosphate on the flame retardancy, mechanical, electrical, and thermal properties of intumescent flame-retardant ethylene- vinyl acetate copolymer/microencapsulated ammonium polyphosphate/ polyamide-6 blends, ACS Appl. Mater. Interfaces, 3, 3754-3761 (2011). https://doi.org/10.1021/am200940z
-
C. Jiao, X. Chen, and J. Zhang, Synergistic effects of
$Fe_2O_3$ with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009). https://doi.org/10.1177/0734904109102033 - L. Liu, J. Hu, J. Zhuo, C. Jiao, X. Chen, and S. Li, Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites, Polym. Degrad. Stab., 104, 87-94 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.03.019
- A. P. Mourituz, Z. Mathys, and A. G. Gibson, Heat release of polymer composites in fire, Composites A, 38, 1040-1054 (2005).
- OHSA, Carbon Monoxide, OSHA fact sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
- OHSA, Carbon Dioxide, Toxicological review of selected chemicals, final rule on air comments project, OHSA's Comments, Jannuary 19, USA (1989).
- MSHA, Carbon Monoxide, MSHA's occupational illness and injury prevention program topic, U.S. Department of Labor, USA (2015).
- M. J. Spearpoint and G. J. Quintiere, Predicting the burning of wood using an integral model, Combust. Flame, 123, 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
Cited by
- Fire risk assessment of cypress wood coated with metal oxide and metal silicate flame retardant using cone calorimeter vol.38, pp.6, 2018, https://doi.org/10.1177/0734904120948215
- 화재 시 연소성 물질에 대한 화재 위험성 등급 평가 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1103
- 화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가 vol.32, pp.2, 2018, https://doi.org/10.14478/ace.2021.1016
- 건축자재용 폴리락타이드의 난연성 향상에 관한 연구 vol.21, pp.2, 2018, https://doi.org/10.5345/jkibc.2021.21.2.113