Figure 1. Changes in absorbance and TOC during advanced oxidation of penicillin.
Figure 2. Changes in (a) E. coli susceptibility and (b) V. fischeri bioluminescence during advanced oxidation of penicillin.
Figure 3. The change in BOD5/COD ratio during O3/UV treatment of penicillin.
Figure 4. TOC reduction by aerobic biological treatment of penicillin-containing wastewater.
References
- R. J. Fair and Y. Tor, Antibiotics and bacterial resistance in the 21st century, Perspect. Medicin. Chem., 6, 25-64 (2014).
- A. J. Ebele, Mohamed A.-E. Abdallah, and S. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment, Emerg. Contam., 3(1), 1-16 (2017). https://doi.org/10.1016/j.emcon.2016.12.004
- P. Zhou, C. Su, B. Li, and Y. Qian, Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes, J. Environ. Eng., 132(1), 129-136 (2006). https://doi.org/10.1061/(ASCE)0733-9372(2006)132:1(129)
- C. Rering, K. Williams, M. Hengel, and R. Tjeerdema, Comparison of direct and indirect photolysis in imazosulfuron photodegradation, J. Agric. Food Chem., 65(15), 3103-3108 (2017). https://doi.org/10.1021/acs.jafc.7b00134
- J. L. Tambosi, R. F. Sena, W. Gebhardt, R. F. P. M. Moreira, H. J. Jose, and H. F. Schroder, Physicochemical and advanced oxidation processes: A comparison of elimination results of antibiotic compounds following an MBR treatment, Ozone Sci. Eng., 31, 428-435 (2009). https://doi.org/10.1080/01919510903324420
- F. A. Almomani, M. Shawaqfah, R. R. Bhosale, and A. Kumar, Removal of emerging pharmaceuticals from wastewater by ozone-based advanced oxidation processes, Environ. Prog. Sustain. Energy, 35(4), 982-995 (2016). https://doi.org/10.1002/ep.12306
-
F. Yuan, C. Hu, X. Hu, D. Wei, Y. Chen, and J. Qu, Photodegradation and toxicity changes of antibiotics in UV and UV/
$H_2O_2$ process, J. Hazard. Mater., 185, 1256-1263 (2001). - G. Lofrano, R. Pedrazzani, G. Libralato, and M. Carotenuto, Advanced oxidation processes for antibiotics removal: A review, Curr. Org. Chem., 21, 1-14 (2017).
- I. Oller, S. Malato, and J. A. Sanchez-Perez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination: A review, Sci. Total Environ., 409, 4141-4166 (2011). https://doi.org/10.1016/j.scitotenv.2010.08.061
- S. Yahiat, F. Fourcade, S. Brosillon, and A. Amrane, Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment: Case of tetracycline and tylosin, Int. Biodeterior. Biodegradation, 65, 997-1003 (2012).
- I. Lee, E. Lee, H. Lee, and K. Lee, Removal of COD and color from anaerobic digestion effluent of livestock wastewater by advanced oxidation using microbubbled ozone, Appl. Chem. Eng., 22(6), 617-622 (2011).
- A. W. Bauer, W. M. M. Kirby, J. C. Sherris, and M. Turck, Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol., 36, 493-496 (1996).
- V. L. K. Jennings, M. H. Rayner-Brandes, and D. J. Bird, Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri), Water Res., 35, 3448-3456 (2001). https://doi.org/10.1016/S0043-1354(01)00067-7
- G. M. Robinson, K. Tonks, R. M. S. Thorn, and D. M. Reynolds, Application of bacterial bioluminescence to assess the efficacy of fast-acting biocides, Antimicrob. Agents Chemother., 55(11), 5214-5219 (2011). https://doi.org/10.1128/AAC.00489-11
- H. T. Luu, Degradation and Changes in Toxicity and Biodegradability of Antibiotics during Advanced Oxidation Processes, MS Thesis, Myongji University, Korea (2013).
- APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, USA (2005).
- H. T. Luu and K. Lee, Degradation and changes in toxicity and biodegradability of tetracycline during ozone/ultraviolet-based advanced oxidation, Water Sci. Technol., 70(7), 1229-1235 (2014). https://doi.org/10.2166/wst.2014.350
- I. Dalmázio, M. O. Almeida, R. Augusti, and T. M. A. Alves, Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry, J. Am. Soc. Mass Spectrom., 18, 679-687 (2007). https://doi.org/10.1016/j.jasms.2006.12.001
-
B. De Witte, H. V. Langenhove, K. Demeestere, K. Saerens, P. D. Wispelaere, and J. Dewulf, Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: Effect of pH and
$H_2O_2$ , Chemosphere, 78, 1142-1147 (2010). https://doi.org/10.1016/j.chemosphere.2009.12.026 -
O. S. Keen and K. G. Linden, Degradation of antibiotic activity during UV/
$H_2O_2$ advanced oxidation and photolysis in wastewater effluent, Environ. Sci. Technol., 47(22), 13020-13030 (2013). https://doi.org/10.1021/es402472x -
A. M. Parker, Y. Lester, E. K. Spangler, U. von Gunten, and K. G. Linden, UV/
$H_2O_2$ advanced oxidation for abatement of organophosphorous pesticides and the effects on various toxicity screening assays, Chemosphere, 182, 477-482 (2017). https://doi.org/10.1016/j.chemosphere.2017.04.150 - A. I. Alaton and A. E. Caglayan, Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent, Ecotoxicol. Environ. Saf., 63, 131-140 (2006). https://doi.org/10.1016/j.ecoenv.2005.02.014
- J. Jeong, W. Song, J. C. William, J. Jung, and J. Greaves, Degradation of tetracycline antibiotics: Mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere, 78, 533-540 (2010). https://doi.org/10.1016/j.chemosphere.2009.11.024
- A. L. Estrada and Y.-Y. Li, and A. Wang, Biodegradability enhancement of wastewater containing cefalexin by means of the electro-Fenton oxidation process, J. Hazard. Mater., 227-228, 41-48 (2012). https://doi.org/10.1016/j.jhazmat.2012.04.079
- A. Alaton, S. Dogruel, E. Baykal, and G. Gerone, Combined chemical and biological oxidation of penicillin formulation effluent, J. Environ. Manag., 73, 155-163 (2004). https://doi.org/10.1016/j.jenvman.2004.06.007
Cited by
- Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview vol.12, pp.1, 2018, https://doi.org/10.3390/w12010102
- 오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화 vol.31, pp.3, 2018, https://doi.org/10.14478/ace.2020.1037
- 전기화학적 산화를 위한 삼원 전이 금속 코팅 불용성 산화 전극 제조에 관한 연구 vol.32, pp.4, 2018, https://doi.org/10.14478/ace.2021.1039