Figure 1. Schematic diagram of microwave oven setup for microwave heating of dielectric heating materials.
Figure 2. Schematic diagram of sewage sludge drying test.
Figure 3. Exothermic performance evaluations of test heating materials with different precursors (Li and Zn)(heating temperature: 1,400 ℃, gas: air, microwave condition: 500 W).
Figure 4. Exothermic performance of test heating materials: (a): B-9, (b): B-14.
Figure 5. SEM of B-9 with different conditions: (a): air, (b): N2, (c): Ar.
Figure 6. XRD patterns of B-9 with different conditions: (a): air, (b): N2, (c): Ar.
Figure 7. Exothermic performance of B-14 with different electrical power.
Figure 8. Moisture contents of sludge with or without B-14 (heating temperature: 1,400 ℃, gas: N2, microwave experiment: 500 W, 1 min).
Table 1. Notation of Various Dielectric Heating Materials
Table 2. Microwave heating test conditions
Table 3. Mass Contents of w/w% of Sewage Sludge at Microwave Drying System
Table 4. Moisture Contents of Sludge with or without B-14
References
- J. W. An, M. Oh, Y. J. Lee, S. J. Oh, H. S. Oh, Y. H. Kim, and J. Y. Lee, Evaluation of drying efficiency of sewage sludge using biodrying, J. Korea Soc. Waste Manag., 35, 103-109 (2018). https://doi.org/10.9786/kswm.2018.35.2.103
- D. G. Kim, K. Y. Lee, and K. Y. Park, Hydrothermal carbonization of sewage sludge for solid recovered fuel and energy recovery, J. Korean Soc. Water Wastewater, 29, 57-63 (2015). https://doi.org/10.11001/jksww.2015.29.1.057
- M. H. Shim, S. K. Yun, K. H. Lee, D. S. Ryu, H. Y. Lee, K. S. Lee, and S. B. Jo, Experimental results of pilot biodrying of organic sludge, Fall Meeting of Korea Organic Resources Recycling Association, September 30 (2017).
- Z. Chen, M. T. Afzal, and A. A. Salema, Microwave drying of wastewater sewage sludge, J. Clean Energy Technol., 2, 282-286 (2014).
- M. S. Shin, H. D. Lee, and Y. W. Jeon, Evaluation of drying performances by hydrothermal reaction of sewage sludge and food wastes, J. Korea Org. Resour. Recycling Assoc., 28, 47-55 (2017).
- Y. F. Huang, H. T. Sung, P. T. Chiueh, and S. L. Lo, Co-torrefaction of sewage sludge and leucaena by using microwave heating, J. Energy, 116, 1-7 (2016). https://doi.org/10.1016/j.energy.2016.09.102
- R. Rajavaram, J. H. Lee, J. S. Oh, H. G. Kim, and J. H. Lee, Microwave heating characteristics of magnetite ore, J. Met. Mater. Int., 22, 1116-1120 (2016). https://doi.org/10.1007/s12540-016-6045-2
- Q. Li, X. Lu, H. Guo, Z. Yang, Y. Li, S. Zhi, and K. Zhang, Sewage sludge drying method combining pressurized electro- osmotic dewatering with subsequent bio-drying, J. Bioresour. Technol., 263, 94-102 (2018). https://doi.org/10.1016/j.biortech.2018.04.110
- J. E. Lee, E. M. Cho, and B. H. Kim, Air drying technology for dewatered cake from wastewater and waterworks sludge, J. Korean Soc. Environ. Eng., 28, 1154-1161 (2006).
- L. Cai, T. B. Chen, D. Gao, and J. Yu, Bacterial communities and their association with the bio-drying of sewage sludge, J. Water Res., 90, 44-51 (2016). https://doi.org/10.1016/j.watres.2015.12.026
- S. N. Ardeh, F. Bertrand, and P. R. Stuart, Key variables analysis of a novel continuous biodrying process for drying mixed sludge, Bioresour. Technol., 101, 3379-3387 (2010). https://doi.org/10.1016/j.biortech.2009.12.037
- N. Remya and J. G. Lin, Current status of microwave application in wastewater treatment-A review, J. Chem. Eng., 166, 797-813 (2011). https://doi.org/10.1016/j.cej.2010.11.100
- D. K. Kim, J. S. Kum, J. R. Kim, S. J. Kim, Y. H. Chung, D. K. Kim, and K. B. Kong, Economic evaluation through thermal efficiency elevation in hot air drying tower, J. Fish Mar. Sci. Edu, 20, 500-507 (2008).
- S. N. Ardeh, F. Bertrand, and P. R. Stuart, Emerging biodrying technology for the drying of pulp and paper mixed sludges, Navaee-Ardeh, J. Drying Technol., 24, 868-878 (2006).
- E. N. Riti-Mihoc, E. Riti-Mihoc, and D. Porcar, Drying sewage sludge using microwave technology - Modern method and energy efficiency, Int. J. Energy Sci. Eng., 2, 28-32 (2016).
- M. Gupta and S. W. Leong, Eugene, Microwaves and Metals, John Wiley & Sons (2007).
- Z. Song, C. Jing, L. Yao, X. Zhao, J. Sung, W. Wang, Y. Mao, and C. Ma, Coal slime hot air/miocrowave combined drying characteristics and energy analysis, Fuel Process. Technol., 156, 491-499 (2017). https://doi.org/10.1016/j.fuproc.2016.10.016
- D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman, and N. J. Miles, Microwave heating applications in environmental engineering-a review, J. Resour. Conserv. Recycling, 34, 75-90 (2002). https://doi.org/10.1016/S0921-3449(01)00088-X
- L. Jinping, G. Jinhua, Hu. Jieqiong, and W. Ni, Study on new thermal drying methods for sewage sludge using microwave and its mechanism, Proceedings of the 5th International Conference on Civil Engineering and Transportation. November 28-29, Guangzhou, China (2015).
- S. Chandrasekaran, S. Ramanathan, and T. Basak, Microwave material processing-a review, AIChE J., 58, 330-363 (2011).
- H. Feng, Y. Yin, and J. Tang, Microwave drying of food and agricultural materials: Basics and heat and mass transfer modeling, Food Eng. Rev., 4, 89-106 (2012). https://doi.org/10.1007/s12393-012-9048-x
-
A. P. Surzhikov, E. N. Lysenko, V. A. Vlasov, A. V. Malyshev, and E. V. Nikolaev, Investigation of the process of ferrite formation in the
$Li_2CO_3-ZnO-Fe_2O_3$ system under high-energy actions, Russ. Phys. J., 6, 681-685 (2013). - S. Chandrasekaran, T. Basak, and R. Srinivasan, Microwave heating characteristics of graphite based powder mixtures, Int. Commun. Heat Mass Transf., 487, 22-27 (2013).
-
S. M. Lee, S. Y. Choi, D. D. Nguyen, S. W. Chang, and S. S. Kim, Sludge drying using microwave heating with
$Li_2CO_3$ -$Fe_2O_3$ -ZnO materials, J. Ind. Eng. Chem., 61, 28-31 (2018). https://doi.org/10.1016/j.jiec.2017.11.043 - A. P. Surzhikov, E. N. Lysenko, V. A. Vlasov, A. V. Malyshev, M. V. Korabeynikov, and M. A. Mikhailenko, Influence of reagents mixture density on the radiation-thermal synthesis of lithium-zinc ferrites, Mater. Sci. Eng., 168, 012093 (2017).
-
A. M. Alvarez, J. F. Bengoa, M. V. Cagmoli, N. G. Gallegos, S. G. Marchetti, and R. C. Mercader, Effect of the calcination atmosphere on the structural properties of the reduced Fe/
$SiO_2$ system, Hyperfine Interact., 161, 3-9 (2005). https://doi.org/10.1007/s10751-005-9186-0 - E. N. Lysenko, A. V. Malyshev, and V. A. Vlasov, Microwave properties of Li-Zn ferrite ceramics, 15th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), June 30-July 4, Novosibirsk, Russia (2014).
- J. Sun, W. Wang, and Q. Yue, Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies, Materials (Basel), 9, 231-255 (2016). https://doi.org/10.3390/ma9040231
- J. A. Menendez, A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E. G. Calvo, and J. M. Bermudez, Microwave heating processes involving carbon materials, Fuel Process. Technol., 91, 1-8 (2010). https://doi.org/10.1016/j.fuproc.2009.08.021
- S. M. Hwang, J. I. Hong, and C. S. Huh, Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves, Prog. Electromagn. Res., 81, 61-72 (2008). https://doi.org/10.2528/PIER07121704
- Ministry of Environment, Korea, Act on the Promotion of Saving and Recycling of Resources, 15101, Article 25-5 (Quality Inspections of Solid Fuels) (2018).