Figure 1. XRD patterns of (a) ZnFe2O4 NPs with synthesis by using precipitation method, (b) ZnFe2O4@SnO2 core-shell NPs and (c) ZnFe2O4@SnO2@TiO2 core-shell NPs with synthesis by using sonochemical method.
Figure 2. Magnetization hysteresis loops of (A) ZnFe2O4 NPs, (B) ZnFe2O4@SnO2 core-shell NPs and (C) ZnFe2O4@SnO2@TiO2 core-shell NPs.
Figure 3. Absorption spectra of MB taken at different photocatalytic degradation times with (a) ZnFe2O4 NPs, (b) ZnFe2O4@SnO2 core-shell NPs and (c) ZnFe2O4@SnO2@TiO2 core-shell NPs.
Figure 4. Photocatalytic degradation of MB in the presence of (A) ZnFe2O4 NPs, (B) ZnFe2O4@SnO2 core-shell NPs and (C) ZnFe2O4@SnO2@TiO2 core-shell NPs.
Figure 5. Zone of inhibition of (A) ZnFe2O4 NPs, (B) ZnFe2O4@SnO2 core-shell NPs and (C) ZnFe2O4@SnO2@TiO2 core-shell NPs on the E. Coli and (A’) ZnFe2O4 NPs, (B’) ZnFe2O4@SnO2 core-shell NPs and (C’) ZnFe2O4@SnO2@TiO2 core-shell NPs on the S. Aureus.
References
- Z. Li, L. W. Mi, W. H. Chen, H. W. Hou, C. T. Liu, H. L. Wang, Z. Zheng, and C. Y. Shen, Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization, Cryst. Eng. Comm., 14, 3965-3971 (2014).
- S. T. Hung, C. J. Chang, and M. H. Hsu, Improved photocatalytic performance of ZnO nanograss decorated pore-array films by surface texture modification and silver nanoparticle deposition, J. Hazard. Mater., 198, 307-316 (2011). https://doi.org/10.1016/j.jhazmat.2011.10.043
- I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytide, and P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Appl. Catal. B, 42, 187-201 (2003). https://doi.org/10.1016/S0926-3373(02)00233-3
-
M. V. Diamanti, F. C. Spreafico, and M. P. Pedeferri, Production of anodic
$TiO_2$ nanofilms and their characterization, Phys. Procedia, 40, 30-37 (2013). https://doi.org/10.1016/j.phpro.2012.12.004 -
M. H. Baek, W. C. Jung, J. W. Yoon, J. S. Hong, Y. S. Lee, and J. K. Suh, Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous
$TiO_2$ /spherical activated carbon, J. Ind. Eng. Chem., 19, 469-477 (2013). https://doi.org/10.1016/j.jiec.2012.08.026 -
Y. C. Lee and J. W. Yang, Self-assembled flower-like
$TiO_2$ on exfoliated graphite oxide for heavy metal removal, J. Ind. Eng. Chem., 18, 1178-1185 (2012). https://doi.org/10.1016/j.jiec.2012.01.005 -
A. B. Hassan, R. Bazzi, and V. Cabuil, Multistep continuous-flow microsynthesis of magnetic and fluorescent
${\gamma}$ -$Fe_2O_3@SiO_2$ core/shell nanoparticles, Angew. Chem. Int. Ed., 48, 7180-7183 (2009). https://doi.org/10.1002/anie.200902181 -
A. Wilson, S. R. Mishra, R. Gupta, and K. Ghosh, Preparation and photocatalytic properties of hybrid core-shell reusable
$CoFe_2O_4$ -ZnO nanospheres, J. Magn. Magn. Mater., 324, 2597-2601 (2012). https://doi.org/10.1016/j.jmmm.2012.02.009 -
L. Y. Chen, Z. X. Xu, H. Dai, and S. T. Zhang, Facile synthesis and magnetic properties of monodisperse
$Fe_3O_4$ /silica nanocomposite microspheres with embedded structures via a direct solution-based, J. Alloys Compd., 497, 221-227 (2010). https://doi.org/10.1016/j.jallcom.2010.03.016 -
L. Huang, F. Peng, H. J. Wang, H. Yu, and Z. Li, Preparation and characterization of
$Cu_2O$ /$TiO_2$ nano-nano heterostructure photocatalysts, Catal. Commun., 10, 1839-1843 (2009). https://doi.org/10.1016/j.catcom.2009.06.011 -
J. Hu, Y. H. Xie, X. F. Zhou, and J. Y. Yang, Solid-state synthesis of ZnO and
$ZnFe_2O_4$ to form p-n junction composite in the use of dye sensitized solar cells, J. Alloys Compd., 676, 320-325 (2016). https://doi.org/10.1016/j.jallcom.2016.03.082 -
J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach, and A. Gedanken, Sonochemical synthesis of
$SnO_2$ nanoparticles and their preliminary study as Li insertion electrodes, Chem. Mater., 12, 2557-2566 (2000). https://doi.org/10.1021/cm990683l - A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972). https://doi.org/10.1038/238037a0
- T. Y. Wei, Y. Y. Wang, and C. C. Wan, Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders, J. Photochem. Photobiol. A, 55, 115-126 (1990). https://doi.org/10.1016/1010-6030(90)80024-R
- E. C. Butler and A. P. Davis, Photocatalytic oxidation in aqueous titanium dioxide suspensions: the influence of dissolved transition metals, J. Photochem. Photobiol. A, 70, 273-283 (1993). https://doi.org/10.1016/1010-6030(93)85053-B
-
W. Choi, A. Termin, and M. R. Hoffmann, The role of metal ion dopants in quantum-sized
$TiO_2$ : correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem., 98, 13669-13679 (1994). https://doi.org/10.1021/j100102a038 -
K. Eguchi, H. Koga, K. Sekizawa, and K. Sasaki,
$Nb_2O_5$ -based composite electrodes for dye-sensitized solar cells, J. Ceram. Soc. Jpn., 108, 1067-1071 (2000). https://doi.org/10.2109/jcersj.108.1264_1067 -
A. Kitiyanan and S. Yoshikawa, The use of
$ZrO_2$ mixed$TiO_2$ nanostructures as efficient dye-sensitized solar cells' electrodes, Mater. Lett., 59, 4038-4040 (2005). https://doi.org/10.1016/j.matlet.2005.07.080 - E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, and J. R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Ceram. Soc., 125, 475-482 (2003).
-
H. S. Jung, J. K. Lee, M. Nastasi, S. W. Lee, J. Y. Kim, J. S. Park, K. S. Hong, and H. Shin, Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated
$TiO_2$ nanoparticulate films, Langmiur, 21, 10332-10335 (2005). https://doi.org/10.1021/la051807d -
S.-J. Roh, R. S. Mane, S. Min, W. Lee, C. D. Lokhande, and S. Han, Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in
$TiO_2$ based dye-sensitized solar cells, Appl. Phys. Lett., 89(25), 253512 (2006). https://doi.org/10.1063/1.2410240 -
Y. Diamant, S. G. Chen, O. Melamed, and A. Zaban, Core-shell nanoporous electrode for dye sensitized solar cells: The effect of the SrTiO3 shell on the electronic properties of the
$TiO_2$ core, J. Phys. Chem. B, 107, 1977-1981 (2003). https://doi.org/10.1021/jp027827v -
W. N. Fu, Y. H. Kadhum, A. Mohamad, M. S. Takriff, and K. Sopian, Synthesis and catalytic activity of
$TiO_2$ nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation, Int. J. Electrochem. Sci., 7, 4871-4888 (2012). -
H. Lv, L. Ma, P. Zeng, D. Ke, and T. Peng, Synthesis of floriated
$ZnFe_2O_4$ with porous nanorod structures and its photocatalytic hydrogen production under visible light, J. Mater. Chem., 20, 3665-3672 (2010). https://doi.org/10.1039/b919897k -
L. Jiang, G. Sun, Z. Zhou, S. Sun, Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou, and Q. Xin, Size-controllable synthesis of monodispersed
$SnO_2$ nanoparticles and application in electrocatalysts, J. Phys. Chem. B, 109, 8774-8778 (2005). -
J. Y. Yoo, Y. K. Lee, and J. G. Kim, Synthesis and characterization of magnetic core-shell
$ZnFe_2O_4@ZnO@SiO_2$ nanoparticles, J. Korean Chem. Soc., 59, 397-406 (2015). https://doi.org/10.5012/jkcs.2015.59.5.397 -
S. M. Chin, E. S. Park, M. S. Kim, and J. S. Jurng, Photocatalytic degradation of methylene blue with
$TiO_2$ nanoparticles prepared by a thermal decomposition process, Powder Technol., 201, 171-176 (2010). https://doi.org/10.1016/j.powtec.2010.03.034 -
N. Chekir, O. Benhabiles, D. Tassalit, N. A. Laoufi, and F. Bentahar, Photocatalytic degradation of methylene blue in aqueous suspensions using
$TiO_2$ and ZnO, Desalination Water Treat., 57, 1-7 (2016). https://doi.org/10.1080/19443994.2016.1119929 - C. Xu, G. P. Rangaiah, and X. S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study, Ind. Eng. Chem. Res., 53, 14641-14649 (2014). https://doi.org/10.1021/ie502367x