Figure 1. Photographs of PIM-1 film, NPIM, and cNPIM.
Figure 2. SEM images of (a) NPIM-0, (b) NPIM-3, (c) NPIM-5, and (d) NPIM-7.
Figure 3. SEM images of (a) cNPIM-0, (b) cNPIM-3, (c) cNPIM-5, and (d) cNPIM-7.
Figure 4. (a) N2 adsorption-desorption isotherms, and (b) pore size distribution of cNPIM-0 and cNPIM-7.
Figure 5. In three-electrode configuration, (a) CV curves and (b) rate dependent capacitances of cNPIM-0, cNPIM-3, cNPIM-5, and cNPIM-7.
Figure 6. Nyquist plots of cNPIM-0, cNPIM-3, and cNPIM-7.
Table 1. Non-solvent Induced Phase Separation Conditions of Porous Polymer Films
Table 2. Textural Parameters of 3D Porous Carbon Electrode (cNPIM-7) and Non-porous Carbon Electrode (cNPIM-0)
Table 3. In Three-electrode System, Comparison of the Surface Area and Specific Capacitance of Electrodes for SCs in Aqueous Electrolyte
References
- H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 19, 291-312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
- A. Aktas, K. Erhan, S. Ozdemir, and E. Ozdemir, Experimental investigation of a new smart energy management algorithm for a hybrid energy storage system in smart grid applications, Electric Power Syst. Res., 144, 185-196 (2017). https://doi.org/10.1016/j.epsr.2016.11.022
- A. Gonzalez, E. Goikolea, J. A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev., 58, 1189-1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249
- G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41, 797-828 (2012). https://doi.org/10.1039/C1CS15060J
- A. G. Pandolfo and A. F. Hollenkamp, Carbon properites and their role in supercapacitors, J. Power Sources, 157, 11-27 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
- R. Liu, L. Wan, S, Liu, L. Pan, D. Wu, and D. Zhao, An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors, Adv. Funct. Mater., 25, 526-533 (2015). https://doi.org/10.1002/adfm.201403280
- K. Sheng, Y. Sun, C. Li, W. Yuan, and F. Shi, Ultrahigh-rate supercapacitors based on electrochemically reduced graphene oxide for ac line-filtering, Sci. Rep., 2, 247-252 (2012). https://doi.org/10.1038/srep00247
- J. Chmiola, G. Yuschin, Y. Gotosi, C. Portet, P. Simon, and P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, 1760-1763 (2006). https://doi.org/10.1126/science.1132195
- B. M. Yoo and H. B. Park, Current status and perspectives of graphene- based membranes for gas separation, Membr. J., 27, 216-225 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.216
- J. E. Shin and H. B. Park, Gas Separation properties of microporous carbon membranes containing mesopores, Membr. J., 28, 221-232 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.4.221
- P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. Mckeown, K. J. Msayib, C. E. Tattershall, and D. Wang, Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity, Adv. Mater., 16, 456-459 (2004). https://doi.org/10.1002/adma.200306053
- J. S. Bonso, G. D, Kalaw, and J. P. Ferraris, High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications, J. Mater. Chem. A, 2, 418-424 (2014). https://doi.org/10.1039/C3TA13779A
- J. W. Jeon, J. H. Han, S. K. Kim, D. G. Kim, Y. S. Kim, D. S. Suh, Y. T. Hong, T. H. Kim, and B. G. Kim, Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes via nonsolvent-induced phase separation for high-performance supercapacitors, J. Mater. Chem. A, 6, 8909-8915 (2018). https://doi.org/10.1039/C8TA02451K
- A. Venault, Y. Chang, D. M. Wang, and D. Bouyer, A Review on polymeric membranes and hygrovels prepared by vapor-induced phase separation process, Polym. Rev., 53, 568-626 (2013). https://doi.org/10.1080/15583724.2013.828750
- S. J. Park, S. Y. Jin, and J. Wawasaki, Preparation and characterization of activated carbons based on polymeric resin with KOH-impregnation, J. Korean Ind. Eng. Chem., 14, 1111-1115 (2003).
- B. G. Choi, Y. S. Huh, and W. H. Hong, Electrochemical characterization of porous graphene film for supercapacitor electrode, Korean Chem. Eng. Res., 50, 754-757 (2012). https://doi.org/10.9713/kcer.2012.50.4.754
- P. C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes, ACS Nano, 4, 4403-4411 (2010). https://doi.org/10.1021/nn100856y
-
Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, and J. Wang, Flexible graphene/
$MnO_2$ composite papers for supercapacitor electrodes, J. Mater. Chem., 21, 14706-14711 (2011). https://doi.org/10.1039/c1jm11941a - J. Xu, Q. Gao, Y. Zhang, Y. Tan, W. Tian, L. Zhu, and L. Jiang, Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials, Sci. Rep., 4, 5545-5551 (2014).
- Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C. M. B. Holt, X. Tan, and D. Mitlin, Colossal pseudocapacitance in a high functionality- high surface area carbon anode doubles the energy of an asymmetric supercapacitor, Energy Environ. Sci., 7, 1708-1718 (2014). https://doi.org/10.1039/C3EE43979H
- F. Li, M. Morris, and K. Y. Chan, Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core-shell carbon structure, J. Mater. Chem., 21, 8880-8886 (2011). https://doi.org/10.1039/c1jm10854a
- L. Wei and G. Yushin, Electrical double layer capacitors with activated sucrose-derived carbon electrodes, Carbon, 49, 4830-4838 (2011). https://doi.org/10.1016/j.carbon.2011.07.003
- K. T. Cho, S. B. Lee, and H. W. Lee, Facile synthesis of highly electrocapacitive nitrogen-doped graphitic porous carbons, J. Phys. Chem. C, 118, 9357-9367 (2014).
- C. Portet, P. L. Taberna, P. Simon, and C. L. Rovert, Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications, Electrochim. Acta, 49, 905-912 (2004). https://doi.org/10.1016/j.electacta.2003.09.043