Figure 1. Preparation of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis.
Figure 2. FSC50 of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis and (+)-α-tocopherol. Data are indicated as mean ± S.D. *p < 0.05 compared with (+)-α-tocopherol.
Figure 3. OSC50 of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis and L-Ascorbic acid in Fe3+-EDTA/H2O2 system by luminol-dependent chemiluminescence assay. Data are indicated as mean ± S.D. *p < 0.05 compared with L-ascorbic acid.
Figure 5. Effects of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis on HaCaT cell viability. HaCaT cells were treated with different concentration of samples for 24 h and cell viability was determined using the MTT assay. Data are presented as mean ± S.D.
Figure 6. Effects of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis on UVB-induced oxidative stress in HaCaT cell. 50% EtOH extracts and EtOAc fraction scavenged UVB-induced upregulation of intracellular ROS production. The H2DCF-DA probe was used to investigate intracellular ROS levels. Data are presented as mean ± S.D. *p < 0.05 compared with UVB treated control in EtOAc fraction groups by one-way ANOVA.
Figure 7. Cell protective effects of 50% ethanol extract and EtOAc fraction from rhizome of B. chinensis on H2O2-induced damaged HaCaT cell. HaCaT cells were treated with different concentration of samples for 2 h before being exposed to oxidative stress. Data are presented as mean ± S.D. *p < 0.05 compared with H2O2 treated control in EtOAc fraction groups by one-way ANOVA.
Figure 8. TLC chromatogram of EtOAc fraction from rhizomes of B. chinensis extract and reference. Eluent system; toluene : chloroform : methanol : formic acid = 1 : 7 : 1 : 1 (v/v), ① ethyl acetate fraction, ② resveratrol.
Figure 9. HPLC chromatogram of the EtOAc fraction from rhizomes of B. chinensis extract at λ = 254~400 nm. 1: tectoridin, 2: iridin, 3: resveratrol, 4: tectorigenin, 5: irigenin, 6: irisflorentin.
Figure 4. Antimicrobial activity of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis against bacteria and fungi. A: S. aureus, B: E. coli, C: P. aeruginosa, D: C. albicans, E: A. niger, a: methyl parben (control), b: EtOAc fraction, c: 50% EtOH extract.
Table 1. List of Strains and Cultivation Condition Used for Antimicrobial Experiment
Table 2. TLC Mobile Phase for Separation of EtOAc Fraction from Rhizomes of B. chinensis Extracts
Table 3. HPLC Condition for Separation of EtOAc Fraction from Rhizomes of B. chinensis Extracts
Table 4. Antimicrobial Activity of 50% EtOH Extract and EtOAc Fraction from rhizomes of B. chinensis against Bacteria and Fungi
Table 5. Minimum Inhibitory Concentration (MIC, μg/mL) of 50% EtOH Extract and EtOAc Fraction from Rhizomes of B. chinensis against Bacteria and Fungi
Table 6. Cellular Protective Effects of 50% EtOH Extract and EtOAc Fraction from Rhizomes of B. chinensis and (+)-α-Tocopherol on Rose-bengal Sensitized Photohemolysis of Human Erythrocytes
Table 7. TLC, HPLC, and LC-MS Data of EtOAc Fraction from Rhizomes of B. chinensis Extract
References
- M. A. Farage, K. W. Miller, P. Elsner, and H. I. Maibach, Intrinsic and extrinsic factors in skin ageing: A review, Int. J. Cosmet. Sci., 30(2), 87-95 (2008). https://doi.org/10.1111/j.1468-2494.2007.00415.x
- M. A. Farage and K. W. Miller, Structural characteristics of the aging skin: a review, Cutan. Ocul. Toxicol., 26(4), 343-357 (2007). https://doi.org/10.1080/15569520701622951
- Th. Herrling, K. Jung, and J. Fuchs, Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin, Spectrochim. Acta. A, 63(4), 840-845 (2006). https://doi.org/10.1016/j.saa.2005.10.013
- H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction, Apoptosis, 5(5), 415-418 (2000). https://doi.org/10.1023/A:1009616228304
- K. J. Trouba, H. K. Hamadeh, R. P. Amin, and D. R. Germoled, Oxidative stress and its role in skin disease, Antioxid. Redox Signal., 4(4), 665-673 (2002). https://doi.org/10.1089/15230860260220175
- K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373-399 (2004). https://doi.org/10.1146/annurev.arplant.55.031903.141701
- S. H. Park, J. M. Kim, J. H. Kim, Y. S. Oh, D. H. Joo, E. Y. Lee, H. S. Shin, A. R. Kim, S. L. Lee, and S. N. Park, Antioxidative effects and component analysis of Graviola (Annona muricata) leaf extract/fractions. J. Soc. Cosmet. Sci. Korea, 43(4), 309-320 (2017). https://doi.org/10.15230/SCSK.2017.43.4.309
- S. J. Oh and J. H. Mo, A comparative study on bioactivity of dried and fermented Salicornia herbacea extracts as cosmetics materials, Asian J. Beauty Cosmetol., 9(4), 1-8 (2011).
- Y. Zhang, G. Yao, X. Huang, and X. Wang, Advances in research on the main chemical constituents and pharmacological effects of Belamcanda chinensis (L.) DC. Asian J. Tradit. Med., 12(5), 201-209 (2017).
- L. Zhang, K. Wei, J. Xu, D. Yang, C. Zhang, Z. Wang, and M. Li, Belamcanda chinensis (L.) DC-An ethnopharmacological, phytochemical and pharmacological review, J. Ethnopharmacol., 186, 1-13 (2016). https://doi.org/10.1016/j.jep.2016.03.046
- R. H. Xin, J. F. Zheng, L. Cheng, W. J. Peng, and Y. J. Luo, Belamcanda chinensis (L.) DC: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine, Afr. J. Tradit. Complement. Altern. Med., 12(6), 39-70 (2015). https://doi.org/10.4314/ajtcam.v12i6.6
- D. Wozniak, B. Janda, I. Kapusta, W. Oleszek, and A. Matkowski, Antimutagenic and anti-oxidant activities of isoflavonoids from Belamcanda chinensis (L.) DC., Mutat. Res. Genet. Toxicol. Environ. Mutagen., 696(2), 148-153 (2010). https://doi.org/10.1016/j.mrgentox.2010.01.004
- D. Wozniak, J. Oszmianski, and A. Matkowski, Antimutagenic and antioxidant activity of the extract from Belamcanda chinensis (L.) DC., Acta Pol. Pharm., 63(3), 213-218 (2006).
- M. Liu, S. Yang, L. Jin, D. Hu, W. Xue, and S. Yang, In vitro antitumor and antioxidant activities of Belamcanda chinensis (L.) DC., J. Med. Plant Res., 6(43), 5566-5569 (2012).
- K. B. Oh, H. J. Kang, and H. Matsuoka, Detection of antifungal activity in Belamcanda chinensis by a single-cell bioassay method and isolation of its active compound, tectorigenin, Biosci. Biotechnol. Biochem., 65(4), 939-942 (2001). https://doi.org/10.1271/bbb.65.939
- J. W. Lee, C. Lee, Q. Jin, M. S. Lee, Y. S. Kim, J. T. Hong, M. K. Lee, and B. Y. Hwang, Chemical constituents from Belamcanda chinensis and their inhibitory effects on nitric oxide production in RAW 264.7 macrophage cells, Arch. Pharm. Res., 38(6), 991-997 (2015). https://doi.org/10.1007/s12272-014-0529-8
- K. S. Ahn, E. J. Noh, K. H. Cha, Y. S. Kim, S. S. Lim, K. H. Shin, and S. H. Jung, Inhibitory effects of irigenin from the rhizomes of Belamcanda chinensis on nitric oxide and prostaglandin E2 production in murine macrophage RAW 264.7 cells, Life Sci., 78(20), 2336-2342 (2006). https://doi.org/10.1016/j.lfs.2005.09.041
- G. H. Wang, G. X. Zou, X. M. You, Y. Zhang, H. Jiang, F. Li, and G. X. Li, Tectorigenin and irigenin inhibit lipopolysaccharide- induced nitric oxide synthase expression in murine macrophages. Biomed. Res., 28(12), 5412-5417 (2017).
- M. Miyazawa, K. Sakano, S. I. Nakamura, H. Shimamura, and H. Kosaka, Antimutagenic activity of isoflavone from Belamcanda chinensis, J. Oleo Sci., 50(7), 545-554 (2001). https://doi.org/10.5650/jos.50.545
- M. Liu, S. Yang, L. Jin, D. Hu, Z. Wu, and S. Yang, Chemical constituents of the ethyl acetate extract of Belamcanda chinensis (L.) DC roots and their antitumor activities, Molecules, 17(5), 6156-6169 (2012). https://doi.org/10.3390/molecules17056156
- A. R. Kim, M. C. Jung, H. I. Jeong, D. G. Song, Y. B. Seo, Y. H. Jeon, S. H. Park, H. S. Shin, S. L. Lee, and S. N. Park, Antioxidative and cellular protective effects of Lysimachia christinae Hance extract and fractions, Appl. Chem. Eng., 29(2), 176-184 (2018). https://doi.org/10.14478/ACE.2017.1113
- Y. S. Lee, M. E. Yun, Y. J. Lee, Y. M. Park, S. L. Lee, and S. N. Park, Antioxidant activities and cytoprotective effects of Lonicera japonica Thunb. extract and fraction against oxidative stress, Microbiol. Biotechnol. Lett., 46(1), 18-28 (2018). https://doi.org/10.4014/mbl.1711.11004
- J. Li, Winnie Z. M. Li, W. Huang, Anna W. H. Cheung, Cathy W. C. Bi, R. Duan, Ava J. Y. Guo, Tina T. X. Dong, and Karl W. K. Tsim, Quality evaluation of rhizoma belamcandae (Belamcanda chinensis (L.) DC) by using high-performance liquid chromatography coupled with diode array detector and mass spectrometry, J. Chromatogr. A, 1216(11), 2071-2078 (2009). https://doi.org/10.1016/j.chroma.2008.05.082
- G. Y. Xie, Y. Zhu, P. Shu, X. Y. Qin, G. Wu, Q. Wang, and M. J. Qin, Phenolic metabolite profiles and antioxidants assay of three Iridaceae medicinal plants for traditional Chinese medicine "She-gan" by on-line HPLC-DAD coupled with chemiluminescence (CL) and ESI-Q-TOF-MS/MS, J. Pharm. Biomed. Anal., 98, 40-51 (2014). https://doi.org/10.1016/j.jpba.2014.05.008