Figure 1. XRD patterns of (a) Cu2O and (b) Cu@Ag particles with 8 at% Ag.
Figure 3. (a) SEM image and (b) EDS spectrum of Cu@Ag particles.
Figure 5. Line scanning analysis of a representative single Cu@Ag particle of 1.0 μm in size: (a) TEM image, (b) elemental EDS line profiling on the cross-section.
Figure 6. Elemental mapping analysis of a representative single Cu@Ag particle of 1.6 μm in size: (a) TEM image, and (b), (c) EDS mappings of Cu and Ag.
Figure 7. TG-DSC result of Cu@Ag particles with 8 at% Ag under dynamic heating of 5 ℃/ min to 550 ℃ in air.
Figure 8. Resistivity of the film containing Cu@Ag particles with various Ag contents after sintering at 180 ℃ in air.
Figure 9. Resistivity of the film containing Cu@Ag particles with 8 at% Ag after sintering at various temperatures in air.
Figure 2. (a) SEM micrographs and (b) EDS spectrum results of Cu@Ag particles with 8 at% Ag, the insert table is the composition of the particles.
Figure 4. Representative TEM micrographs of (a) Cu2O particles and (b) Cu@Ag particles with 8 at% Ag.
References
- A. Pajor-Swierzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation, Colloids Surf. A, 521, 272-280 (2017). https://doi.org/10.1016/j.colsurfa.2016.08.026
- A. Kamyshny, J. Steinke, and S. Magdassi, Metal-based inkjet inks for printed electronics, Open Appl. Phys. J., 4, 19-36 (2011). https://doi.org/10.2174/1874183501104010019
- C. K. Kim, G.-J. Lee, M. K. Lee, and C. K. Rhee, A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics, Powder Technol., 263, 1-6 (2014). https://doi.org/10.1016/j.powtec.2014.04.064
- Y.-S. Park, C. Y. An, P. K. Kannan, N. Seo, K. Zhuo, T. K. Yoo, and C.-H. Chung, Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation, Appl. Surf. Sci., 389, 865-873 (2016). https://doi.org/10.1016/j.apsusc.2016.08.008
- A. Pajor-Świerzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Effect of carboxylic acids on conductivity of metallic films formed by inks based on copper@silver core-shell particles, Colloids Surf. A, 522, 320-327 (2017). https://doi.org/10.1016/j.colsurfa.2017.03.019
- S.-B. Sim, D.-S. Bae, and J.-D. Han, Preparation of silver nanoparticles by chemical reduction-protection method using 1-decanoic acid and tri-n-octylphosphine, and their Application in Electrically Conductive Silver nanopaste, Appl. Chem. Eng., 27(1), 68-73 (2016). https://doi.org/10.14478/ACE.2015.1126
- Y.-W. Shin, K.-B. Kim, S.-J. Noh, and S.-Y. Soh, Effects of the particle size and shape of silver nanoparticles on optical and electrical characteristics of the transparent conductive film with a self-assembled network structure, Appl. Chem. Eng., 29(2), 162-167 (2018). https://doi.org/10.14478/ACE.2017.1107
- S. Magdassi, M. Grouchko, and A. Kamyshny, Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability, Materials, 3, 4626-4638 (2010). https://doi.org/10.3390/ma3094626
- H. Nishikawa, S. Mikami, K. Miyake, A. Aoki, and T. Takemoto, Effects of silver coating covered with copper filler on electrical resistivity of electrically conductive adhesives, Mater. Trans., 51, 1785-1789 (2010). https://doi.org/10.2320/matertrans.MJ201020
- C.-H. Tsa, S.-Y. Chen, J.-M. Song, I.-G. Chen, and H.-Y. Lee, Thermal stability of Cu@Ag core-shell nanoparticles, Corros. Sci., 74, 123-129 (2013). https://doi.org/10.1016/j.corsci.2013.04.032
- E. B. Choi and J.-H. Lee, Enhancement in electrical conductivity of pastes containing submicron Ag-coated Cu filler with palmitic acid surface modification, Appl. Surf. Sci., 415, 67-74 (2017). https://doi.org/10.1016/j.apsusc.2017.01.006
- E. B. Choi and J.-H. Lee, Submicron Ag-coated Cu particles and characterization methods to evaluate their quality, J. Alloys Compd., 689, 952-958 (2016). https://doi.org/10.1016/j.jallcom.2016.08.009
- R. Zhang, W. Lin, K. Lawrence, and C. P. Wong, Highly reliable, low cost, isotropically conductive adhesives filled with Ag-coated Cu flakes for electronic packaging applications, Int. J. Adhes. Adhes., 30, 403-407 (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.004
- C.-H. Hsiao, W.-T. Kung, J.-M. Song, J.-Y. Chang, and T.-C. Chang, Development of Cu-Ag pastes for high temperature sustainable bonding, Mater. Sci. Eng. A, 684, 500-509 (2017). https://doi.org/10.1016/j.msea.2016.12.084
- T.-L. Guo, J.-G. Li, X. Sun, and Y. Sakka, Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules, Mater. Sci. Eng. C, 61, 97-104 (2016). https://doi.org/10.1016/j.msec.2015.12.016
- J. H. Bang and K. S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater., 22, 1039-1059 (2010). https://doi.org/10.1002/adma.200904093
-
S. Mosleh, M. R. Rahimi, M. Ghaedi, K. Dashtian, and S. Hajati, Sonochemical-assisted synthesis of CuO/
$Cu_2O$ /Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization, Ultrason. Sonochem., 40, 601-610 (2018). https://doi.org/10.1016/j.ultsonch.2017.08.007 - M. Heshmat, H. Abdizadeh, and M. R. Golobostanfard, Sonochemical assisted synthesis of ZnO nanostructured thin films prepared by sol-gel method, Procedia Mater. Sci., 11, 486-490 (2015). https://doi.org/10.1016/j.mspro.2015.11.070
- B. Huang, X. Hao, H. Zhang, Z. Yang, Z. Ma, H. Li, F. Nie, and H. Huang, Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity, Ultrason. Sonochem., 21, 1349-1357 (2014). https://doi.org/10.1016/j.ultsonch.2014.02.010
- B. Miljevic, F. Hedayat, S. Stevanovic, K. E. Fairfull-Smith, S. E. Bottle, and Z. D. Ristovski, To sonicate or not to sonicate PM filters: Reactive oxygen species generation upon ultrasonic irradiation, Aerosol Sci. Technol., 48, 1276-1284 (2014). https://doi.org/10.1080/02786826.2014.981330
-
H. Y. Jung and S.-W. Lee, Study on antibacterial activity of Ag nanometal-deposited
$TiO_2$ prepared by sonochemical reduction method, Appl. Chem. Eng., 25(1), 84-89 (2014). https://doi.org/10.14478/ACE.2013.1115 - H.-R. Park, S.-W. Lee, and I.-S. Yoo, Aging effect on the antimicrobial activity of nanometal (Au, Ag)-titanium dioxide nanocomposites, Appl. Chem. Eng., 23(3), 293-296 (2012).
-
S. Tao, M. Yang, H. Chen, M. Ren, and G. Chen, Microfluidic synthesis of Ag@
$Cu_2O$ core-shell nanoparticles with enhanced photocatalytic activity, J. Colloid Interface Sci., 486, 16-26 (2017). https://doi.org/10.1016/j.jcis.2016.09.051 -
L. Pan, L. Li, and Y. Chen, Synthesis of Ag/
$Cu_2O$ hybrids and their photocatalytic degradation treatment of p-nitrophenol, Micro Nano Lett., 6(12), 1019-1022 (2011). https://doi.org/10.1049/mnl.2011.0593 - W. Li, L. Li, Y. Gao, D. Hu, C.-F. Li, H. Zhang, J. Jiu, S. Nagao, and K. Suganuma, Highly conductive copper films based on submicron copper particles/copper complex inks for printed electronics: Microstructure, resistivity, oxidation resistance, and long-term stability, J. Alloys Compd., 732, 240-247 (2018). https://doi.org/10.1016/j.jallcom.2017.10.193
-
T. Ping, S. Mihua, S. Chengwen, W. Shuaihua, and C. Murong, Enhanced photocatalytic activity of
$Cu_2O$ /Cu heterogeneous nanoparticles synthesized in aqueous colloidal solutions on degradation of methyl orange, Rare Metal Mater. Eng., 45(9), 2214-2218 (2016). https://doi.org/10.1016/S1875-5372(17)30005-X -
S. Dehghanpour, A. Mahmoudi, M. Mirsaeed-Ghazi, N. Bazvand, S. Shadpour, and A. Nemati,
$Cu_2O$ microsphere, microspherical composite of$Cu_2O$ /Cu nanocrystals and various Cu microcrystals: In situ hydrothermal conversion of Cu-aminodiphosphonate complexes, Powder Technol., 246, 148-156 (2013). https://doi.org/10.1016/j.powtec.2013.04.046 - X. Yu, J. Li, T. Shi, C. Cheng, G. Liao, J. Fan, T. Li, and Z. Tang, A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics, J. Alloys Compd., 724, 365-372 (2017). https://doi.org/10.1016/j.jallcom.2017.07.045
- H. T. Hai, H. Takamura, and J. Koike, Oxidation behavior of Cu-Ag core-shell particles for solar cell applications, J. Alloys Compd., 564, 71-77 (2013). https://doi.org/10.1016/j.jallcom.2013.02.048
- A. Muzikansky, P. Nanikashvili, J. Grinblat, and D. Zitoun, Ag dewetting in Cu@Ag monodisperse core-shell nanoparticles, J. Phys. Chem. C, 117, 3093-3100 (2013).
- C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, and H.-Y. Lee, Thermal stability of Cu@ Ag core-shell nanoparticles, Corros. Sci., 74, 123-129 (2013). https://doi.org/10.1016/j.corsci.2013.04.032
- S.-S. Chee and J.-H. Lee, Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size, J. Mater. Chem. C, 2, 5372-5381 (2014). https://doi.org/10.1039/C4TC00509K
- M. Grouchko, A. Kamyshny, and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem., 19, 3057-3062 (2009). https://doi.org/10.1039/b821327e
- V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper, Appl. Surf. Sci., 254, 3949-3954 (2008). https://doi.org/10.1016/j.apsusc.2007.12.019
-
C. H. Lee, E. B. Choi, and J.-H. Lee, Characterization of novel high-speed die attachment method at 225
$^{\circ}C$ using submicrometer Ag-coated Cu particles, Scripta Mater., 150, 7-12 (2018). https://doi.org/10.1016/j.scriptamat.2018.02.029 -
C. C. Tseng, J. H. Hsieh, S. J. Liu, and W. Wu, Effects of Ag contents and deposition temperatures on the electrical and optical behaviors of Ag-doped
$Cu_2O$ thin films, Thin Solid Films, 518, 1407-1410 (2009). https://doi.org/10.1016/j.tsf.2009.09.116
Cited by
- 스크린 프린팅을 이용한 PEDOT:PSS/AgNW 기반 전기전도성 스마트 텍스타일의 제조 및 신호전달선으로의 적용 vol.23, pp.4, 2018, https://doi.org/10.5805/sfti.2021.23.4.527