Figure 1. Schematic diagram of batch crystallization apparatus[2,13]. 1: circulator, 2: PID controller, 3: digital thermometer, 4: variablespeed mixer, 5: crystallizer with a double jacket, 6: glass filter, 7: aspirator.
Figure 2. Solvent comparison for purification of 2,6-DMN (without washing) at SC. Feed used: Feed I, solvent used: 1 Isopropyl alcohol, 2 Methanol, 3 Ethanol, 4 Hexane, 5 Methanol (60 vol%) + acetone, 6 Acetonitrile, 7 Heptane, 8 Isopropyl ether, 9 Methyl acetate, 10 Isopropyl acetate, 11 Acetone, 12 Ethyl acetate.
Figure 3. Effect of (a) impeller speed (N) and operating time (t), and (b) volume ratio (S/F) and operation temperature (T) for purification of 2,6-DMN (without washing) through SC. Feed used: Feed I. Keys: (a) ● N (t = 1 h), y2,6-DMN,SC, ▲ N (t = 1 h), Y2,6-DMN,SC, ○ t (N = 2.5 s-1), y2,6-DMN,SC, △ t (N = 2.5 s-1), Y2,6-DMN,SC, and (b) ▲ S/F (T = -20 ℃), ▽ T (S/F = 9).
Figure 4. Change of purity and yield of 2,6-DMN and 2,7-DMN according as each operation. Conditions: SC (Feed used: Feed I, solvent used: isopropyl alcohol, without washing, S/F = 1, T = -15 ℃, N = 2.5 s1, t = 1 h), RC 1 (Feed used: Feed II, solvent used: methyl acetate, without washing, S/F = 5, T = -20 ℃, N = 2.5 s1, t = 1 h), RC 2 (Feed used: Feed III, solvent used: methyl acetate, with washing using methyl acetate, S/F = 9, T = -20 ℃, N = 2.5 s1, t = 1 h).
Figure 5. Separation and purification process of 2,6-DMN from LCO fraction. Tower nos. 1, 3, 4: crystallization towers; Tower nos. 2, 5: distillation towers; Tower no. 6: washing tower; 7: dryer; tank nos. 8, 9: dissolution tanks; 10: isomerization reactor. MA: methyl acetate, IPA: isopropyl alcohol.
Table 1. Material Systems and Experimental Conditions for Each Operation
Table 2. Composition of LCO Fraction (Feed 1) and Crystal Recovered via Each Operation
References
- H. C. Kang and S. J. Kim, Separation of 2,6-dimethylnaphthalene in dimethylnaphthalene isomers mixture by crystallization operation, Appl. Chem. Eng., 25, 116-120 (2014). https://doi.org/10.14478/ace.2013.1118
- S. J. Kim and H. J. Jeong, High-purity purification of 2,6-dimethylnaphthalene (2,6-DMN) in Light cycle oil-Purification of 2,6-DMN from concentrate of DMN isomers by crystallization-, Appl. Chem. Eng., 19, 105-110 (2008).
- S. J. Kim and S. C. Kim, Separation and recovery of dimethlnaphthalene isomers from light cycle oil by distillation-extraction combination, Sep. Sci. Technol., 38, 4097-4118 (2003).
- S. J. Kim, R. Egashira, and J. Kawasaki, Extraction of aromatics in the light cycle oil - Extraction equilibrium and extraction rate of naphthalene group, J. Japan Pet. Inst., 38, 114-120 (1995). https://doi.org/10.1627/jpi1958.38.114
- S. J. Kim, S. C. Kim, and J. Kawasaki, Separation and recovery of bicyclic aromatic components in the light cycle oil, Sep. Sci. Technol., 38, 179-199 (2003). https://doi.org/10.1081/SS-120016705
- S. J. Kim and S. C. Kim, Separation of valuable bicyclic aromatic components from light cycle oil by an emulsion liquid membrane, Sep. Sci. Technol., 39, 1093-1109 (2004).
- T. A. Al-Sahhaf and E. Kapetanovic, Measurement and prediction of phase equilibria in the extraction of aromatics from naphtha reformate by tetraethylene glycol, Fluid Phase Equilib., 118, 271-285 (1996). https://doi.org/10.1016/0378-3812(95)02849-8
- G. R. Vakili-Nezhaad, H. Modarress, and G. A. Mansoori, Thermodynamic modeling and experimental studies of dearomatization process from a complex petroleum fraction, Sep. Sci. Technol., 35, 743-754 (2000). https://doi.org/10.1081/SS-100100188
- G. M.Radwan, S. A. Al-Muhtaseb, and M. A. Fahim, Liquid-liquid equilibria for the extraction of aromatics from naphtha reformate by dimethylformamide/ethylene glycol mixed solvent, Fluid Phase Equilib., 129, 175-186 (1997). https://doi.org/10.1016/S0378-3812(96)03179-2
- T. T. Jiao, X. L. Zhuang, H. Y. He, C. S. Li, H. N. Chen, and S. J. Zhang, Separation of phenolic compounds from coal tar via liquid-liquid extraction using amide compounds, Ind. Eng. Chem. Res., 54, 2573-2579 (2015). https://doi.org/10.1021/ie504892g
- H. C. Kang and S. J. Kim, Comparison of methanol with formamide on separation of nitrogen heterocyclic compounds from model coal tar fraction by batch cocurrent multistage equilibrium extraction, Polycycl. Aromat. Compd., 36, 754-757 (2016).
- S. J. Kim and Y. J. Chun, Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction, Sep. Sci. Technol., 40, 2095-2109 (2005). https://doi.org/10.1081/SS-200068488
- S. J. Kim, Separation and purification of indole in model coal tar fraction of 9 compounds system, Polycycl. Aromat. Compd., Doi:10.1080/10406638.2016.1259170 (2016).
- R. Egashira and J. Kawasaki, Decrease in aromatics content in motor gasoline by O/W/O emulsion liquid membrane process, J. Japan Pet. Inst., 40, 107-114 (1997). https://doi.org/10.1627/jpi1958.40.107
- S. J. Kim, H. C. Kang, Y. S. Kim, and H. J. Jeong, Liquid membrane permeation of nitrogen heterocyclic compounds contained in model coal tar fraction, Bull. Korean Chem. Soc., 31, 1143-1148 (2010). https://doi.org/10.5012/bkcs.2010.31.5.1143
- A. Sharma, A. N. Goswami, B. S. Rawat, and R. Krishina, Effect of surfactant type on selectivity for the separation of 1-methylnaphthalene from dodecane using liquid membranes, J. Membr. Sci., 32, 19-30 (1987). https://doi.org/10.1016/S0376-7388(00)81571-9
- M. Motoyuki, K. Yamamoto, S. Yoshida, S. Yamamoto, A. V. Sapre, J. P. McWilliams, S. P. Donnelly, and S. D. Hellring, Isomerization of dimethylnaphthalene to produce 2,6-dimethylnaphthalene, US Patent 6,018,087 (2000).
- Y. Yamamoto, Y. Sato, T. Ebina, C. Yokoyama, S. Takahasi, Y. Mito, H. Tanabe, N. Nishiguchi, and K. Nagaoka, Separation of high purity indole from coal tar by high pressure crystallization, Fuel, 70, 565-566 (1991). https://doi.org/10.1016/0016-2361(91)90039-D
- M. Motoyuki, K. Yamamoto, A. V. Sapre, J. P. McWilliams, and S. P. Donnelly, Process for preparing 2,6-dimethylnaphthalene, US Patent 6,018,086 (2000).
- H. Uchida, Y. Iwai, M. Amiya, and Y. Arai, Adsorption behaviors of 2,6-and 2,7-dimethylnaphthalenes in supercritical carbon dioxide using NaY-type zeolite, Ind. Eng. Chem. Res., 36, 424-429 (1997). https://doi.org/10.1021/ie960364t
- I. Mochida, Y. Q. Fei, and K. Sakanishi, Capture and recovery of basic nitrogen species in coal tar pitch using nickel sulfate as adsorbent, Chem. Lett., 515-518 (1990).
- S. Hall, R. Tang, J. Baeyens, and R. Dewil, Removing polycyclic aromatic hydrocarbons from water by adsorption on silicagel, Polycycl. Aromat. Compd., 29, 160-183 (2009). https://doi.org/10.1080/10406630903017534
- M. Motoyuki, K. Yamamoto, A. V. Sapre, and J. P. McWilliams, Process for preparing dialkylnaphthalene, US Patent 6,011,190 (2000).
Cited by
- Molecular Recognition by Chalcogen Bond: Selective Charge‐Transfer Crystal Formation of Dimethylnaphthalene with Selenadiazolotetracyanonaphthoquinodimethane vol.2021, pp.6, 2021, https://doi.org/10.1002/ejoc.202001554