DOI QR코드

DOI QR Code

Electrochemical dehalogenation of disinfection by-products and iodine-containing contrast media: A review

  • Korshin, Gregory (Department of Civil and Environmental Engineering, University of Washington) ;
  • Yan, Mingquan (Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education)
  • 투고 : 2018.01.30
  • 심사 : 2018.03.20
  • 발행 : 2018.12.31

초록

This paper summarizes results of research on the electrochemical (EC) degradation of disinfection by-products (DBPs) and iodine-containing contrast media (ICMs), with the focus on EC reductive dehalogenation. The efficiency of EC dehalogenation of DBPs increases with the number of halogen atoms in an individual DBP species. EC reductive cleavage of bromine from parent DBPs is faster than that of chlorine. EC data and quantum chemical modeling indicate that the EC reduction of iodine-containing DBPs (I-DBPs) is characterized by the formation of active iodine that reacts with the organic substrate. The occurrence of ICMs has attracted attention due to their association with the generation of I-DBPs. Indirect EC oxidation of ICMs using anodes that produce reactive oxygen species can result in a complete degradation of these compounds yet I-DBPs are formed in the process. Reductive EC deiodination of ICMs is rapid and its overall rate is diffusion-controlled yet I-DBPs are also produced in this reaction. Further progress in practically feasible EC methods to remove DBPs, ICMs and other trace-level organic contaminants requires the development of novel electrocatalytic materials, elimination of mass transfer limitations via innovative design of 3D electrodes and EC reactors, and further progress in the understanding of intrinsic mechanisms of EC reactions of DBPs and TrOC at EC interfaces.

키워드

참고문헌

  1. Richardson SD, Thruston AD, Caughran TV, Chen PH, Collette TW, Floyd TL. Identification of new drinking water disinfection byproducts formed in the presence of bromide. Environ. Sci. Technol. 1999;33:3378-3383. https://doi.org/10.1021/es9900297
  2. Barbosa MO, Moreira NFF, Ribeiro AR, Pereira MFR, Silva AMT. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016;94:257-279. https://doi.org/10.1016/j.watres.2016.02.047
  3. Richardson S, Postigo C. Drinking water disinfection by-products. Emerging organic contaminants and human health. Barcelo D, ed. Springer Berlin Heidelberg; 2012. p. 93-137.
  4. Allard S, Tan J, Joll CA, von Gunten U. A mechanistic study on the formation of Cl-/Br-/I-Trihalomethanes during chlorination/chloramination combined with a theoretical cytotoxicity evaluation. Environ. Sci. Technol. 2015;49:11105-11114 https://doi.org/10.1021/acs.est.5b02624
  5. Zhai H, Zhang X. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination. Environ. Sci. Technol. 2011;45:2194-2201. https://doi.org/10.1021/es1034427
  6. Zhai H, Zhang X, Zhu X, Liu J, Ji M. Formation of brominated disinfection byproducts during chloramination of drinking water: New polar species and overall kinetics. Environ. Sci. Technol. 2014;48:2579-2588. https://doi.org/10.1021/es4034765
  7. Plewa MJ, Wagner ED, Richardson SD, Thruston AD, Woo Y-T, McKague AB. Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts. Environ. Sci. Technol. 2004;38:4713-4722. https://doi.org/10.1021/es049971v
  8. Richardson SD, Fasano F, Ellington JJ, et al. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environ. Sci. Technol. 2008;42:8330-8338. https://doi.org/10.1021/es801169k
  9. Arslan-Alaton I, Olmez-Hanci T, Korkmaz G, Sahin C. Removal of iopamidol, an iodinated X-ray contrast medium, by zero-valent aluminum-activated $H_2O_2$ and $S_2O{_8}^{2-}$. Chem. Eng. J. 2017;318:64-75. https://doi.org/10.1016/j.cej.2016.05.021
  10. Kormos JL, Schulz M, Ternes TA. Occurrence of iodinated X-ray contrast media and their biotransformation products in the urban water cycle. Environ. Sci. Technol. 2011;45:8723-8732. https://doi.org/10.1021/es2018187
  11. Weissbrodt D, Kovalova L, Ort C, et al. Mass flows of X-ray contrast media and cytostatics in hospital wastewater. Environ. Sci. Technol. 2009;43:4810-4817. https://doi.org/10.1021/es8036725
  12. Zwiener C, Glauner T, Sturm J, Woerner M, Frimmel FH. Electrochemical reduction of the iodinated contrast medium iomeprol: Iodine mass balance and identification of transformation products. Anal. Bioanal. Chem. 2009;395:1885-1892. https://doi.org/10.1007/s00216-009-3098-9
  13. Radjenovic J, Flexer V, Donose BC, Sedlak DL, Keller J. Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation. Environ. Sci. Technol. 2013;47:13686-13694. https://doi.org/10.1021/es403410p
  14. Duirk SE, Lindell C, Cornelison CC, et al. Formation of toxic iodinated disinfection by-products from compounds used in medical imaging. Environ. Sci. Technol. 2011;45:6845-6854. https://doi.org/10.1021/es200983f
  15. Tian FX, Xu B, Lin YL, Hu CY, Zhang TY, Gao NY. Photodegradation kinetics of iopamidol by UV irradiation and enhanced formation of iodinated disinfection by-products in sequential oxidation processes. Water Res. 2014;58:198-208. https://doi.org/10.1016/j.watres.2014.03.069
  16. Ye T, Xu B, Wang Z, et al. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter. Water Res. 2014;66:390-398. https://doi.org/10.1016/j.watres.2014.08.044
  17. Bergmann MEH, Rollin J. Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catal. Today 2007;124:198-203. https://doi.org/10.1016/j.cattod.2007.03.038
  18. Sarkka H, Bhatnagar A, Sillanpaa M. Recent developments of electro-oxidation in water treatment - A review. J. Electroanal. Chem. 2015;754:46-56. https://doi.org/10.1016/j.jelechem.2015.06.016
  19. Radjenovic J, Farre MJ, Mu Y, Gernjak W, Keller J. Reductive electrochemical remediation of emerging and regulated disinfection byproducts. Water Res. 2012;46:1705-1714. https://doi.org/10.1016/j.watres.2011.12.042
  20. Radjenovic J, Sedlak DL. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 2015;49:11292-11302. https://doi.org/10.1021/acs.est.5b02414
  21. Peters DG, McGuire CM, Pasciak EM, et al. Electrochemical dehalogenation of organic pollutants. J. Mex. Chem. Soc. 2014;58:287-302.
  22. Korshin GV, Jensen MD. Electrochemical reduction of haloacetic acids and exploration of their removal by electrochemical treatment. Electrochim. Acta 2001;47:747-751. https://doi.org/10.1016/S0013-4686(01)00755-1
  23. Hozalski RM, Zhang L, Arnold WA. Reduction of haloacetic acids by $Fe^0$: Implications for treatment and fate. Environ. Sci. Technol. 2001;35:2258-2263. https://doi.org/10.1021/es001785b
  24. Zhang L, Arnold WA, Hozalski RM. Kinetics of haloacetic acid reactions with Fe(0). Environ. Sci. Technol. 2004;38:6881-6889. https://doi.org/10.1021/es049267e
  25. Ceto X, Saint C, Chow CWK, Voelcker NH, Prieto-Simon B. Electrochemical fingerprints of brominated trihaloacetic acids (HAA3) mixtures in water. Sen. Act. B 2017;247:70-77. https://doi.org/10.1016/j.snb.2017.02.179
  26. Altamar L, Fernandez L, Borras C, Mostany J, Carrero H, Scharifker B. Electroreduction of chloroacetic acids (mono-, di- and tri-) at polyNi(II)-tetrasulfonated phthalocyanine gold modified electrode. Sen. Act. B. 2010;146:103-110. https://doi.org/10.1016/j.snb.2010.01.026
  27. Mao R, Li N, Lan H, et al. Dechlorination of trichloroacetic acid using a noble metal-free Graphene-Cu foam electrode via direct cathodic reduction and atomic H*. Environ. Sci. Technol. 2016;50:3829-3837. https://doi.org/10.1021/acs.est.5b05006
  28. Li A, Zhao X, Hou Y, Liu H, Wu L, Qu J. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Appl. Catal. B. 2012;111-112:628-635. https://doi.org/10.1016/j.apcatb.2011.11.016
  29. Liu Y, Mao R, Tong Y, et al. Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/$Al_2O_3$ catalyst. Electrochim. Acta 2017;232:13-21. https://doi.org/10.1016/j.electacta.2017.02.071
  30. Tang S, Wang XM, Yang HW, Xie YF. Haloacetic acid removal by sequential zero-valent iron reduction and biologically active carbon degradation. Chemosphere 2013;90:1563-1567. https://doi.org/10.1016/j.chemosphere.2012.09.046
  31. Zhao X, Li A, Mao R, Liu H, Qu J. Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode. Water Res. 2014;51:134-143. https://doi.org/10.1016/j.watres.2013.12.028
  32. Li Y, Kemper JM, Datuin G, Akey A, Mitch WA, Luthy RG. Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system. Water Res. 2016;98:354-362. https://doi.org/10.1016/j.watres.2016.04.019
  33. Pearson CR, Hozalski RM, Arnold WA. Degradation of chloropicrin in the presence of zero-valent iron. Environ. Toxicol. Chem. 2005;24:3037-3042. https://doi.org/10.1897/04-614Ra.1
  34. Ma J, Yan M, Kuznetsov AM, Masliy AN, Ji G, Korshin GV. Rotating ring-disk electrode and quantum-chemical study of the electrochemical reduction of monoiodoacetic acid and iodoform. Environ. Sci. Technol. 2015;49:13542-13549. https://doi.org/10.1021/acs.est.5b03951
  35. Criddle CS, McCarty PL. Electrolytic model system for reductive dehalogenation in aqueous environments. Environ. Sci. Technol. 1991;25:973-978. https://doi.org/10.1021/es00017a022
  36. Sonoyama N, Sakata T. Electrochemical continuous decomposition of chloroform and other volatile chlorinated hydrocarbons in water using a column type metal impregnated carbon fiber electrode. Environ. Sci. Technol. 1999;33:3438-3442. https://doi.org/10.1021/es980903g
  37. Polo AMS, Lopez-Penalver JJ, Sanchez-Polo M, Rivera-Utrilla J, Velo-Gala I, Salazar-Rabago JJ. Oxidation of diatrizoate in aqueous phase by advanced oxidation processes based on solar radiation. J. Photochem. Photobiol. A 2016;319:87-95.
  38. Putschew A, Schittko S, Jekel M. Quantification of triiodinated benzene derivatives and X-ray contrast media in water samples by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2001;930:127-134. https://doi.org/10.1016/S0021-9673(01)01186-4
  39. Ternes TA, Hirsch R. Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Environ. Sci. Technol. 2000;34:2741-2748. https://doi.org/10.1021/es991118m
  40. Stieber M, Putschew A, Jekel M. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron - Kinetic studies and assessment of transformation products assay. Environ. Sci. Technol. 2011;45:4944-4950. https://doi.org/10.1021/es200034j
  41. Dong H, Qiang Z, Lian J, Li J, Yu J, Qu J. Deiodination of iopamidol by zero valent iron (ZVI) enhances formation of iodinated disinfection by-products during chloramination. Water Res. 2018;129:319-326. https://doi.org/10.1016/j.watres.2017.11.032
  42. Hu J, Dong H, Qu J, Qiang Z. Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and ${\delta}-MnO_2$). Water Res. 2017;112:1-8. https://doi.org/10.1016/j.watres.2017.01.025
  43. Mu Y, Radjenovic J, Shen J, Rozendal RA, Rabaey K, Keller J. Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. Environ. Sci. Technol. 2011;45:782-788. https://doi.org/10.1021/es1022812
  44. Lutke Eversloh C, Schulz M, Wagner M, Ternes TA. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes. Water Res. 2015;72:293-304. https://doi.org/10.1016/j.watres.2014.12.021
  45. Del Moro G, Pastore C, Di Iaconi C, Mascolo G. Iodinated contrast media electro-degradation: Process performance and degradation pathways. Sci. Total Environ. 2015;506-507:631-643. https://doi.org/10.1016/j.scitotenv.2014.10.115
  46. Yan M, Chen Z, Li N, Zhou Y, Zhang C, Korshin G. Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE). Water Res. 2018;136:104-111. https://doi.org/10.1016/j.watres.2018.02.045

피인용 문헌

  1. Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials vol.25, pp.3, 2018, https://doi.org/10.4491/eer.2018.349
  2. Optimizing RuOx−TiO2 composite anodes for enhanced durability in electrochemical water treatments vol.265, pp.None, 2018, https://doi.org/10.1016/j.chemosphere.2020.129166
  3. Degradation of diatrizoate in a pin-to-liquid plasma reactor, its transformation products and their residual toxicity vol.782, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.146895