DOI QR코드

DOI QR Code

Distribution of brominated flame retardants and phthalate esters in house dust in Korea

  • Kweon, Deok-Jun (Department of Environmental Health Sciences, School of Public Health, Seoul National University) ;
  • Kim, Moon-Kyung (Department of Environmental Health Sciences, School of Public Health, Seoul National University) ;
  • Zoh, Kyung-Duk (Department of Environmental Health Sciences, School of Public Health, Seoul National University)
  • 투고 : 2018.01.02
  • 심사 : 2018.03.02
  • 발행 : 2018.12.31

초록

We examined the levels of brominated flame-retardants (BFRs) including polybrominateddiphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), and phthalates in indoor dusts in residential houses in Korea, and their distribution patterns depending on building characteristics. Mean concentrations of phthalate esters ($1,825{\mu}g\;g^{-1}$) were significantly higher than that of BFRs (PBDE: $1,332ng\;g^{-1}$, HBCDs: $459ng\;g^{-1}$, and TBBPA: $213ng\;g^{-1}$), indicating more frequent use of phthalate-containing products such as PVC flooring in the Korean houses. PVC flooring house was associated with higher concentrations of DEHP (p = 0.001) and BBP (p = 0.012), indicating that exposure to phthalate was higher in the PVC flooring house. Building age was significantly related with levels of PBDEs especially BDE-47 (p = 0.062), BDE-203 (p = 0.007), DEHP (p = 0.004), and BBP (p = 0.070), respectively, indicating that older buildings can produce higher amounts of PBDEs and phthalates. Our study can provide important information on the sources of BFRs and phthalates in residential houses in Korea.

키워드

참고문헌

  1. Sjodin A, Patterson Jr DG, Bergman A. A review on human exposure to brominated flame retardants - Particularly polybrominated diphenyl ethers. Environ. Int. 2003;29:829-839. https://doi.org/10.1016/S0160-4120(03)00108-9
  2. Choi KI, Lee SH, Osako M. Leaching of brominated flame retardants from TV housing plastics in the presence of dissolved humic matter. Chemosphere 2009;74:460-466. https://doi.org/10.1016/j.chemosphere.2008.08.030
  3. Besis A, Katsoyiannis A, Botsaropoulou E, Samara C. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece. Environ. Pollut. 2014;188:64-70. https://doi.org/10.1016/j.envpol.2014.01.021
  4. Vonderheide AP, Mueller KE, Meija J, Welsh GL. Polybrominated diphenyl ethers: Causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Sci. Total Environ. 2008;400:425-436. https://doi.org/10.1016/j.scitotenv.2008.05.003
  5. Abdallah MAE, Harrad S, Covaci A. Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, UK: Implications for human exposure. Environ. Sci. Technol. 2008;42:6855-6861. https://doi.org/10.1021/es801110a
  6. Allen JG, McClean MD, Stapleton HM, Webster TF. Critical factors in assessing exposure to PBDEs via house dust. Environ. Int. 2008;34:1085-1091. https://doi.org/10.1016/j.envint.2008.03.006
  7. Lilienthal H, Verwer CM, van der Ven V, Piersma AH, Vos JG. Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats: Neurobehavioral effects in offspring from a one-generation reproduction study. Toxicology 2008;246:45-54. https://doi.org/10.1016/j.tox.2008.01.007
  8. Geens T, Roosens L, Neels H, Covaci A. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere 2009;76:755-760. https://doi.org/10.1016/j.chemosphere.2009.05.024
  9. Fromme H, Lahrz T, Piloty M, Gebhart H, Oddoy A, Ruden H. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin. Indoor Air 2004;14:188-195. https://doi.org/10.1111/j.1600-0668.2004.00223.x
  10. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Perspect. 1995;103:582-587. https://doi.org/10.1289/ehp.95103582
  11. Harris CA, Henttu P, Parker MG, Sumpter JP. The estrogenic activity of phthalate esters in vitro. Environ. Health Perspect. 1997;105:802-811. https://doi.org/10.1289/ehp.97105802
  12. Hauser R, Calafat A. Phthalates and human health. Occup. Environ. Med. 2005;62:806-818. https://doi.org/10.1136/oem.2004.017590
  13. Abb M, Heinrich T, Sorkau E, Lorenz, W. Phthalates in house dust. Environ. Int. 2009;35:965-970. https://doi.org/10.1016/j.envint.2009.04.007
  14. Schecter A, Papke O, Tung KC, Staskal D, Birnbaum L. Polybrominated diphenyl ethers contamination of United States food. Environ. Sci. Technol. 2004;98:5306-5311.
  15. Hazrati S, Harrad S. Causes of variability in concentrations of polychlorinated biphenyls and polybrominated diphenyl ethers in indoor air. Environ. Sci. Technol. 2006;40:7584-7589. https://doi.org/10.1021/es0617082
  16. Batterman S, Godwin C, Chernyak S, Jia C, Charles S. Brominated flame retardants in offices in Michigan, USA. Environ. Int. 2010;36:548-556. https://doi.org/10.1016/j.envint.2010.04.008
  17. Kim SK, Kim KS, Hong SH. Overview on relative importance of house dust ingestion in human exposure to polybrominated diphenyl ethers (PBDEs): International comparison and Korea as a case. Sci. Total Environ. 2016;571:82-91. https://doi.org/10.1016/j.scitotenv.2016.07.068
  18. Li HL, Song WW, Zhang ZF, et al. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment. Sci. Total Environ. 2016;565:496-502. https://doi.org/10.1016/j.scitotenv.2016.04.187
  19. Bornehag CG, Sundell J, Weschler CJ, et al. The association between asthma and allergic symptoms in children and phthalates in house dust: A nested case-control study. Environ. Health Perspect. 2004;112:1393-1397. https://doi.org/10.1289/ehp.7187
  20. Covaci A, Voorspoels S, Ramos L, Neels H, Blust R. Recent developments in the analysis of brominated flame retardants and brominated natural compounds. J. Chromatogr. A. 2007;1153:145-171. https://doi.org/10.1016/j.chroma.2006.11.060
  21. Law RJ, Allchin CR, de Boer J, et al. Levels and trends of brominated flame retardants in the European environment. Chemosphere 2006;64:187-208. https://doi.org/10.1016/j.chemosphere.2005.12.007
  22. Lee S, Kannan K, Moon HB. Assessment of exposure to polybrominated diphenyl ethers (PBDEs) via seafood consumption and dust ingestion in Korea. Sci. Total Environ. 2013;443:24-30. https://doi.org/10.1016/j.scitotenv.2012.10.099
  23. Kim KK. Contents characteristics of polybrominated diphenyl ethers (PBDEs) in indoor household dust (In Korean). Anal. Sci. Technol. 2013;26:113-119. https://doi.org/10.5806/AST.2013.26.2.113
  24. La Guardia M, Hale RC, Harvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environ. Sci. Technol. 2006;40:6247-6254. https://doi.org/10.1021/es060630m
  25. Kim SK, Khim JS, Lee KT, et al. Chapter 2. Emission, contamination and exposure, fate and transport, and national management strategy of persistent organic pollutants in South Korea. Dev. Environ. Sci. 2007;7:31-157.
  26. Sjodin A, Papke O, McGahee E, et al. Concentration of polybrominated diphenyl ethers (PBDEs) in household dust from various countries. Chemosphere 2008;73:S131-S136. https://doi.org/10.1016/j.chemosphere.2007.08.075
  27. Dodson RE, Perovich LJ, Covaci A, et al. After the PBDE phase-out: A broad suite of flame retardants in repeat house dust samples from California. Environ. Sci. Technol. 2012;46:13056-13066. https://doi.org/10.1021/es303879n
  28. Stuart H, Ibarra C, Abdallah MAE, Boon R, Neels H, Covaci A. Concentrations of brominated flame retardants in dust from United Kingdom cars, homes, and offices: Causes of variability and implications for human exposure. Environ. Int. 2008;34:1170-1175. https://doi.org/10.1016/j.envint.2008.05.001
  29. Stasinska A, Reid A, Hinwood A, et al. Concentrations of polybrominated diphenyl ethers (PBDEs) in residential dust samples from Western Australia. Chemosphere 2013;91:187-193. https://doi.org/10.1016/j.chemosphere.2012.12.044
  30. Huang Y, Chen L, Peng X, Xu Z, Ye Z. PBDEs in indoor dust in South-Central China: Characteristics and implications. Chemosphere 2010;78:169-174. https://doi.org/10.1016/j.chemosphere.2009.09.061
  31. Yu YX, Pang YP, Li C, et al. Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in-and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs. Environ. Int. 2012;42:124-131. https://doi.org/10.1016/j.envint.2011.05.012
  32. Barghi M, Shin ES, Kim JC, Choi SD, Chang YS. Human exposure to HBCD and TBBPA via indoor dust in Korea: Estimation of external exposure and body burden. Sci. Total Environ. 2017;593-594:779-786. https://doi.org/10.1016/j.scitotenv.2017.03.200
  33. Abdallah MAE, Harrad S. Personal exposure to HBCDs and its degradation products via ingestion of indoor dust. Environ. Int. 2009:35:870-876. https://doi.org/10.1016/j.envint.2009.03.002
  34. Abdallah MAE, Harrad S, Ibarra C, et al. Hexabromocyclododecanes in indoor dust from Canada, the United Kingdom, and the United States. Environ. Sci. Technol. 2008;42:459-464. https://doi.org/10.1021/es702378t
  35. Ali N, Dirtu AC, Eede NVD, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment. Chemosphere 2012;88:1276-1282. https://doi.org/10.1016/j.chemosphere.2012.03.100
  36. Tue NM, Takahashi S, Suzuki G, et al. Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites. Environ. Int. 2013;51:160-167. https://doi.org/10.1016/j.envint.2012.11.006
  37. Takigami H, Suzuki G, Hirai Y, Sakai S. Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan. Chemosphere 2009;76:270-277. https://doi.org/10.1016/j.chemosphere.2009.03.006
  38. Wang W, Abualnaja KO, Asimakopoulos AG, et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including Bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015;83:183-191. https://doi.org/10.1016/j.envint.2015.06.015
  39. Carignan CC, Abdallah MA, Wu N, et al. Predictors of tetrabromobisphenol- A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environ. Sci. Technol. 2012;46:12146-12153. https://doi.org/10.1021/es302638d
  40. Butte W, Hostrup O, Walker G. Phthalate im Hausstaub und in der Luft: Assoziationen und mogliche Quellen in Wohnraumen. Gefahrstoffe Reinhalt Luft 2008;68:79-81.
  41. Kersten W, Reich T. Schwer fluchtige organische Umweltchemikalien in Hamburger Hausstauben. Gefahrstoffe Reinhalt Luft 2003;63:85-91.
  42. Pohner A, Simrock S, Thumulla J, Weber S, Wirkner T. Hintergrundbelastung des hausstaubes von privathauhalten mit mittel-und schwerfluchtigen organischen schadstoffen. Umwelt Gesundheit 1997;2:e64.
  43. Nagorka R, Scheller C, Ullrich D. Weichmacher im Hausstaub. Gefahrstoffe Reinhalt Luft 2005;65:99-105.
  44. Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ. Sci. Technol. 2003;37:4543-4553. https://doi.org/10.1021/es0264596
  45. Langer S, Weschler CJ, Fischer A, Beko G, Toftum J, Clausen G. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers. Atmos. Environ. 2010;44:2294-2301. https://doi.org/10.1016/j.atmosenv.2010.04.001
  46. Ait Bamai Y, Araki A, Kawai T, et al. Associations of phthalate concentrations in floor dust and multi-surface dust with the interior materials in Japanese dwellings. Sci. Total Environ. 2014;468:147-157.
  47. Gevao B, Al-Ghadban AN, Bahloul M, Uddin S, Zafar J. Phthalates in indoor dust in Kuwait: Implications for non-dietary human exposure. Indoor Air 2013;23:126-133. https://doi.org/10.1111/ina.12001
  48. Hua I, Kang NG, Jafvert CT, Fabrega-Duque J. Heterogeneous photochemical reactions of decabromodiphenyl ether. Environ. Toxicol. Chem. 2003;22:798-804. https://doi.org/10.1002/etc.5620220418
  49. Clausen P, Hansen V, Gunnarsen L, Afshari A, Wolkoff P. Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: Emission and sorption experiments in FLEC and CLIMPAQ. Environ. Sci. Technol. 2004;38:2531-2537. https://doi.org/10.1021/es0347944
  50. Jeon S, Kim KT, Choi K. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature a school. Sci. Total Environ. 2016;547:441-446. https://doi.org/10.1016/j.scitotenv.2015.12.135
  51. Bornehag CG, Lundgren B, Weschler CJ, Sigsgaard T, Hagerhed-Engman L, Sundell J. Phthalates in indoor dust and their association with building characteristics. Environ. Health Perspect. 2005;113:1399-1404. https://doi.org/10.1289/ehp.7809

피인용 문헌

  1. Household Dust: Loadings and PM10-Bound Plasticizers and Polycyclic Aromatic Hydrocarbons vol.10, pp.12, 2018, https://doi.org/10.3390/atmos10120785
  2. Toxicity of Tetrabromobisphenol A and Its Derivative in the Mouse Liver Following Oral Exposure at Environmentally Relevant Levels vol.55, pp.12, 2021, https://doi.org/10.1021/acs.est.1c01726
  3. Optimization and validation of a two-step method for the determination of polybrominated diphenyl ethers in Croatian house dust samples vol.13, pp.31, 2018, https://doi.org/10.1039/d1ay00695a