DOI QR코드

DOI QR Code

Water shortage assessment by applying future climate change for boryeong dam using SWAT

SWAT을 이용한 기후변화에 따른 보령댐의 물부족 평가

  • Kim, Won Jin (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Jung, Chung Gil (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Jin Uk (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Seong Joon (Department of Civil, Environmental and Plant Engineering, Konkuk University)
  • 김원진 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 정충길 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 김진욱 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경플랜트공학과)
  • Received : 2018.08.04
  • Accepted : 2018.10.17
  • Published : 2018.12.31

Abstract

In the study, the water shortage of Boryeong Dam watershed ($163.6km^2$) was evaluated under future climate change scenario. The Soil and Water Assessment Tool (SWAT) was used considering future dam release derived from multiple linear regression (MLR) analysis. The SWAT was calibrated and verified by using daily observed dam inflow and storage for 12 years (2005 to 2016) with average Nash-Sutcliffe efficiency of 0.59 and 0.91 respectively. The monthly dam release by 12 years MLR showed coefficient of determination ($R^2$) of above 0.57. Among the 27 RCP 4.5 scenarios and 26 RCP 8.5 scenarios of GCM (General Circulation Model), the RCP 8.5 BCC-CSM1-1-M scenario was selected as future extreme drought scenario by analyzing SPI severity, duration, and the longest dry period. The scenario showed -23.6% change of yearly dam storage, and big changes of -34.0% and -24.1% for spring and winter dam storage during 2037~2047 period comparing with 2007~2016 period. Based on Runs theory of analyzing severity and magnitude, the future frequency of 5 to 10 years increased from 3 in 2007~2016 to 5 in 2037~2046 period. When considering the future shortened water shortage return period and the big decreases of winter and spring dam storage, a new dam operation rule from autumn is necessary for future possible water shortage condition.

본 연구에서는 보령댐 유역($163.6km^2$)을 대상으로 SWAT (Soil and Water Assessment Tool) 모델, GCM (General Circulation Model) 기후변화 시나리오와 다중회귀분석으로 산정한 미래 방류량을 활용하여 극한 기후변화 사상이 반영된 보령댐의 물부족을 평가하였다. 유역의 물수지 분석을 위해 보령댐 유역을 대상으로 기상자료, 보령댐 운영자료를 수집하였으며, SWAT 모형의 신뢰성 있는 유출량 보정을 위해 보령댐의 실측 방류량을 이용하여 댐 운영모의를 고려하였고 유입량 및 방류량 자료를 활용하여 모형의 보정(2007~2010)과 검증(2010~2016)을 실시하였다. 기후변화를 반영하기 위해 APCC의 26개 CMIP5 GCM 자료 중 RCP (Representative Concentration Pathway)4.5와 RCP 8.5 시나리오를 SPI와 극한 가뭄지수로 분석하여 RCP 8.5 BCC-CSM1-1-M을 극한 가뭄 시나리오로 선정하였다. 2005년부터 2016년까지의 일별 관측자료로 다중회귀분석하여 월별 방류량 추정식을 만들었고, 1월부터 12월까지 각 식들의 결정계수 $R^2$는 0.57 이상으로 나타났다. 선정된 극한 가뭄 시나리오 기상자료를 방류량 추정식에 대입하여 미래기간 일별 방류량을 구축하였다. SWAT 수문평가 결과, S3 (2037~2046) 기간 봄철 저수량이 34.0% 감소하는 것으로 분석되었다. Runs 이론을 바탕으로 물부족의 심도를 구한 다음 재현기간에 따른 빈도해석을 하였다. 5~10년 빈도의 심도로 발생하는 물부족이 미래기간에 발생하는 빈도로 보령댐의 물부족을 평가하였다. 물부족 평가 결과, S3 (2037~2046) 기간에서 5~10년 빈도의 심도를 가지는 물부족이 기준기간(2007~2016) 보다 2회 더 발생하였으며 S3 (2037~2046)에 물부족 계획 수립이 필요하다고 판단하였다.

Keywords

SJOHCI_2018_v51n12_1195_f0001.png 이미지

Fig. 1. Flow chart

SJOHCI_2018_v51n12_1195_f0002.png 이미지

Fig. 2. Boryeong dam watershed information

SJOHCI_2018_v51n12_1195_f0003.png 이미지

Fig. 3. GIS Data for SWAT model

SJOHCI_2018_v51n12_1195_f0004.png 이미지

Fig. 4. Standardized precipitation Index for 1, 6, 12 months-duration

SJOHCI_2018_v51n12_1195_f0005.png 이미지

Fig. 5. Time series results of dam inflow

SJOHCI_2018_v51n12_1195_f0006.png 이미지

Fig. 6. Time series results of dam storage

SJOHCI_2018_v51n12_1195_f0007.png 이미지

Fig. 7. Monthly data of precipitation and storage for future periods

Table 1. Dry/Wet condition classification

SJOHCI_2018_v51n12_1195_t0001.png 이미지

Table 3. Results of SWAT model calibration and validation for dam inflow

SJOHCI_2018_v51n12_1195_t0002.png 이미지

Table 4. Results of SWAT model calibration and validation for dam storage

SJOHCI_2018_v51n12_1195_t0003.png 이미지

Table 5. Multiple linear regression analysis results

SJOHCI_2018_v51n12_1195_t0004.png 이미지

Table 6.Storage and Precipitation data for standard period and future periods

SJOHCI_2018_v51n12_1195_t0005.png 이미지

Table 7. Results of runs theory and frequency analysis

SJOHCI_2018_v51n12_1195_t0006.png 이미지

Table 2. Adjusted value of model paramters

SJOHCI_2018_v51n12_1195_t0007.png 이미지

References

  1. Ahn, S. R., Park, G., Shin, Y. H., and Kim, S. J. (2009). "Assessment of the potential water supply rate of agricultural irrigation facilities using MODSIM-For Geum River basin." Journal of Korea Water Resources Association, Vol. 42. No. 10, pp. 825-843. https://doi.org/10.3741/JKWRA.2009.42.10.825
  2. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). "Large area hydrologic modeling and assessment part I: model development 1." JAWRA Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  3. Cossins, G., and Hegerty, K. L. (1977). "The application of transient analysis to future urban water supply dams." Hydrology Symposium, The institution of Engineers, Australia, Nat. Conf. Pub. No. 77/5, pp. 98-102.
  4. Intergovernmetal Panel Climate Change (IPCC) (2014). The Fifth Assessment Report (AR5) of The Intergovernmental Panel on Climate Change.
  5. Jeong, H. G., Kim, S. J., and Ha, R. (2013). "Assessment of Climate Change Impact on Storage Behavior of Chungju and Regulation Dams Using SWAT Model." Journal of Korea Water Resources Association, Vol. 46, No. 12, pp. 1235-1247. https://doi.org/10.3741/JKWRA.2013.46.12.1235
  6. Korea Meteorological Administration (KMA) (2012). The Korean peninsula climate change prospect report.
  7. McKee, T. B., Doesken, N. J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." In Proceedings of the 8th Conference on Applied Climatology, Vol. 17, No.22, pp. 179-183.
  8. Ministry of Agriculture and Forestry (MAF) (2002). Design criteria of land and water development planfor agriculture (fill dam).
  9. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2001). Soil and water assessment tool theoretical documentation version 2000. TWRI Report TR-191, Texas Water Resources Institute, College Station, Texas.
  10. Park, M., Yoon, Y. N., and Lee, D. R. (1999). "An application of drought frequency formula for the determination of reservoir capacity and the evaluation of water supply capability." In Proceedings of the Korea Water Resources Association Conference, pp. 56-61.
  11. Park, N. Y., Choi, J. Y., Yoo, S. H., and Lee, S. H. (2013). "Assessment of Anti-Drought Capacity for Agricultural Reservoirs using RCP Scenarios." Journal of The Korean Society of Agricultural Engineers, Vol. 55, No. 3, pp. 13-24. https://doi.org/10.5389/KSAE.2013.55.3.013
  12. Yoon, S. H., and Won, M. S. (2016). "Correlation Analysis of Forest Fire Occurrences by Change of Standardized Precipitation Index." The Korean Association of Geographic Information Studies, Vol. 19, No. 2, pp. 14-26. https://doi.org/10.11108/kagis.2016.19.2.014