DOI QR코드

DOI QR Code

Estimation of Flood Quantile in Ungauged Watersheds for Flood Damage Analysis Based on Flood Index of Natural Flow

미계측 유역의 홍수피해분석을 위한 자연유량의 홍수지표 기반 확률홍수량 산정

  • 채병석 (한양대학교 대학원 건설환경공학과) ;
  • 최시중 (한국건설기술연구원 수자원.하천연구소) ;
  • 안재현 (서경대학교 공과대학 토목건축공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경공학과)
  • Received : 2017.12.08
  • Accepted : 2017.12.28
  • Published : 2018.02.01

Abstract

In this study, flood quantiles were estimated at ungauged watersheds by adjusting the flood quantiles from the design rainfall - runoff analysis (DRRA) method based on regional frequency analysis. Comparing the flood frequency analysis (FFA) and DRRA, it was found that the flood quantiles estimated by the DRRA method were overestimated by 52%. In addition, a practical method was suggested to make an flood index using natural flows to apply the regional frequency analysis (RFA) to ungauged watersheds. Considering the relationships among DRRA, FFA, and RFA, we derived an adjusting formula that can be applied to estimate flood quantiles at ungauged watersheds. We also employed Leave-One-Out Cross-Validation scheme and skill score to verify the method proposed in this study. As a result, the proposed model increased the accuracy by 23.2% compared to the existing DRRA method.

본 연구에서는 설계 강우-유출 관계 분석법으로 산정된 값을 지역빈도해석 기법을 바탕으로 보정하여 미계측 유역에서의 확률홍수량을 산정하는 방법을 제안하였다. 홍수빈도해석법과 설계 강우-유출 관계 분석법을 비교 분석한 결과, 설계 강우-유출 관계 분석법으로 산정된 확률홍수량이 약 52% 과대 산정되는 것으로 나타났다. 또한, 미계측 유역의 확률홍수량을 산정하기 위해서 유역 특성인자를 자연유량으로 지표화 하여 지역빈도해석법을 수행하였다. 이와 같은 세 가지 방법의 설계홍수량 산정법을 기반으로 미계측 유역을 대상으로 적용할 수 있는 보정식을 도출하였다. 미계측 유역에 대한 적용성을 검토하기 위해 Leave-One-Out Cross-Validation 기법과 Skill Score 기법을 적용하였다. 그 결과, 정확도가 기존의 설계 강우-유출 관계 분석법보다 23.2% 증가한 것으로 나타났다.

Keywords

References

  1. Boughton, W. C. and Hill, P. I. (1997). "A design flood estimation procedure using data generation and daily water balance model." Cooperative Research Centre for Catchment Hydrology, Victoria, Australia.
  2. Burnham, M. W. (1980). "Adoption of flood flow frequency estimates at ungaged location, training document 11." US Army Corps of Engineers.
  3. Chae, B., Lee, J., Ahn, J. and Kim, T. (2017). "Estimating design floods in ungauged watersheds through regressive adjustment of flood quantiles from the design rainfall - runoff analysis method." Journal of Korea Water Resources Association, Vol. 50, No. 9, pp. 627-635 (in Korean). https://doi.org/10.3741/JKWRA.2017.50.9.627
  4. Choi, J., Ji, J. and Yi, J. (2015). "A study on rainfall-runoff frequency analysis for estimating design flood." Journal of Korea Water Resources Association, Vol. 48, No. 8, pp. 605-612 (in Korean). https://doi.org/10.3741/JKWRA.2015.48.8.605
  5. Fill, H. D. and Stedinger, J. R. (1998). "Using regional regression within index flood procedures and an empirical Bayesian estimator." Journal of Hydrology, Vol. 210, No. 1, pp. 128-145. https://doi.org/10.1016/S0022-1694(98)00177-2
  6. Haan, C. T. and Schulze, R. E. (1987). "Return period flow prediction with uncertain parameters." Transactions of the ASAE, Vol. 30, No. 3, pp. 665-669. https://doi.org/10.13031/2013.30457
  7. Heo, J., Lee, Y., Shin, H. and Kim, K. (2007). "Application of regional rainfall frequency analysis in South Korea (I): Rainfall quantile estimation." KSCE Journal of Civil Engineering, Vol. 27, No. 2B, pp. 101-111.
  8. Kim, N. W. and Won, Y. S. (2004). "Estimates of regional flood frequency in Korea." Journal of Korea Water Resources Association, Vol. 37, No. 12, pp. 1019-1032 (in Korean). https://doi.org/10.3741/JKWRA.2004.37.12.1019
  9. Kim, N. W., Lee, J. E., Lee, J. and Jung, Y. (2016). "Regional frequency analysis using spatial data extension method: I. An empirical investigation of regional flood frequency analysis." Journal of Korea Water Resources Association, Vol. 49, No. 5, pp. 439-450 (in Korean). https://doi.org/10.3741/JKWRA.2016.49.5.439
  10. Kim, S. Y. and Heo, J. H. (2006). "Application for the selection criteria of appropriate probability distribution." Proceedings of the Korea Water Resources Association Conference, Korea Water Resources Association, pp. 169-173 (in Korean).
  11. Korea Water Resources Association (2009). Commentary of rivers design standard (in Korean).
  12. Lee, J. S. (2015). Hydrology. Goomibook (in Korean).
  13. Malamud, B. D. and Turcotte, D. L. (2006). "The applicability of power-law frequency statistics to floods." Journal of Hydrology, Vol. 322, No. 1, pp. 168-180. https://doi.org/10.1016/j.jhydrol.2005.02.032
  14. Nam, W., Kim, T., Shin, J. and Heo, J. (2008). "Regional rainfall frequency analysis by multivariate techniques." Journal of Korea Water Resources Association, Vol. 41, No. 5, pp. 517-525 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.5.517
  15. Pilgrim, D. H. and Cordery, I. (1975). "Rainfall temporal patterns for design floods." Journal of the Hydraulics Division, Vol. 101, No. 1, pp. 81-95.
  16. Rogger, M., Kohl, B., Pirkl, H., Viglione, A., Komma, J., Kirnbauer, R., Merz, R. and Bloschl, G. (2012). "Runoff models and flood frequency statistics for design flood estimation in Austria-Do they tell a consistent story?" Journal of Hydrology, Vol. 456, pp. 30-43.
  17. Yoon, Y. M., Shin, C. K. and Jang, S. H. (2005). "An estimation of flood quantiles at ungauged locations by index flood frequency curve." Journal of Korea Water Resources Association, Vol. 38, No. 1, pp. 1-9 (in Korean). https://doi.org/10.3741/JKWRA.2005.38.1.001