DOI QR코드

DOI QR Code

One Step Electrodeposition of Copper Zinc Tin Sulfide Using Sodium Thiocyanate as Complexing Agent

  • Sani, Rabiya (Department of Chemical Engineering, National Institute of Technology Raipur) ;
  • Manivannan, R. (Department of Chemical Engineering, National Institute of Technology Raipur) ;
  • Victoria, S. Noyel (Department of Chemical Engineering, National Institute of Technology Raipur)
  • 투고 : 2018.05.09
  • 심사 : 2018.08.02
  • 발행 : 2018.12.31

초록

Single step electrodeposition of $Cu_2ZnSnS_4$ (CZTS) for solar cell applications was studied using an aqueous thiocyanate based electrolyte. The sodium thiocyanate complexing agent was found to decrease the difference in the deposition potential of the elements. X-ray diffraction analysis of the samples indicates the formation of kesterite phase CZTS. UV-vis studies reveal the band gap of the deposits to be in the range of 1.2 - 1.5 eV. The thickness of the deposit was found to decrease with increase in pH of the electrolyte. Nearly stoichiometric composition was obtained for CZTS films coated at pH 2 and 2.5. I-V characterization of the film with indium tin oxide (ITO) substrate in the presence and the absence of light source indicate that the resistance decrease significantly in the presence of light indicating suitability of the deposits for solar cell applications. Results of electrochemical impedance spectroscopic studies reveal that the cathodic process for sulfur reduction is the slowest among all the elements.

키워드

참고문헌

  1. M.P. Suryavanshi, G.L. Agawane, S.M. Bhosale, S. Shin, P.S. Patil, J.H. Kim, A.V. Mohalkar, Mater. Technol, 2013, 28, 101-109.
  2. Y. Yih-Min, C. Hsiang, L.S. Min, L. Shaung, Chalcogenide Lett, 2013, 10, 565-571.
  3. K.P. Saraswat, S. Michael, F.L. Michael, T. Ashutosh, Thin Solid Films, 2012, 520, 1694-1697. https://doi.org/10.1016/j.tsf.2011.07.052
  4. A.A. Harry, P. Albert, Nat. Mater, 2010, 9, 205-213. https://doi.org/10.1038/nmat2629
  5. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovolt. Res. Appl, 2011, 19(1), 84-92. https://doi.org/10.1002/pip.1088
  6. M. Kumar, D. Ashish, A. Nirmal, V. Swaminathan, Q. Qiquan, Energy Environ. Sci, 2015, 8(11), 3134-3159. https://doi.org/10.1039/C5EE02153G
  7. S. Tulshi, R. Dhyey, P. Malkeshkumar, M. Indrajit, R. Abhijit, Mater. Chem. Phys, 2016, 171, 63-72. https://doi.org/10.1016/j.matchemphys.2015.11.001
  8. J.J. Scragg, Copper zinc tin sulfide thin films for photovoltaics, synthesis and characterization by electrochemical methods. Springer-Verlag, Berlin Heiderberg, 2011.
  9. A. Ennaoui, et al, Thin Solid Films, 2009, 517(7), 2511-2514. https://doi.org/10.1016/j.tsf.2008.11.061
  10. K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater, 2010, 22(20), E156-E159. https://doi.org/10.1002/adma.200904155
  11. X. Zhang, X. Shi, W. Ye, C. Ma, C. Wang, Appl. Phys. A, 2009, 94(2), 381-386. https://doi.org/10.1007/s00339-008-4815-5
  12. C.P. Chan, H. Lam, C. Surya, Sol. Energ. Mat. Sol. C, 2010, 94(2), 207-211. https://doi.org/10.1016/j.solmat.2009.09.003
  13. A.C. Tan, Tin and solder plating in the semiconductor industry, Chapman & Hall, London, 1992.
  14. C.Y. Sheng, W.Y. Jun, L. Rui, G.J. Hua, L.J. Xiao, Y. Shi, Chin. Phys. B, 2012, 21, 058801-04. https://doi.org/10.1088/1674-1056/21/5/058801
  15. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energ. Mater, 2012, 2(2), 253-259. https://doi.org/10.1002/aenm.201100526
  16. B.S. Pawar, S.M. Pawar, S.W. Shin, D.S. Choi, C.J. Park, S.S. Kolekar, J.H. Kim, Appl. Surf. Sci, 2010, 257(5), 1786-1791. https://doi.org/10.1016/j.apsusc.2010.09.016
  17. S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, Electrochim. Acta , 2010, 55(12), 4057-4061. https://doi.org/10.1016/j.electacta.2010.02.051
  18. J.H. Lee, H.J. Choi, W.M. Kim, J.H. Jeong, J.K. Park, Solar Energy, 2016, 136, 499-504. https://doi.org/10.1016/j.solener.2016.07.031
  19. A. Emrani, P. Vasekar, C.R. Westgate, Solar Energy, 2013, 98, 335-340. https://doi.org/10.1016/j.solener.2013.09.020
  20. H. Zhang, S. Cheng, J. Yu, Y. Lai, H. Zhou, H. Jia, ECS J. Solid State Sci. Technol, 2016, 5(9), P521-P525. https://doi.org/10.1149/2.0241609jss
  21. J.J.M. Josiah, D.H. Rasmussen, I.I. Suni, J. Electrochem. Soc, 2011, 158(2), D54-D56. https://doi.org/10.1149/1.3519997
  22. R.Sani, R. Manivannan, S.N. Victoria, Chal. Lett, 2017, 14,165-170.
  23. M.G. Ganchev, K.D. Kochev, Sol. Energ. Mat. Sol. Cells, 1993, 31(2), 163-170. https://doi.org/10.1016/0927-0248(93)90048-8
  24. S.B. Pawar, M.S. Pawar, V.K. Gurav, W.S. Shin, Y.J. Lee, S.S. Kolekar, H.J. Kim, ISRN Renewable Energy, 2011, 934575.
  25. M. Farinella, R. Inguanta, T. Spanio, P. Livreri, S. Piazza, C. Sunseri, Energy Proceedia, 2013, 44,105-110.
  26. D. Pletcher, Industrial electrochemistry, Springer Science + Business Media, B.V, 1984.
  27. A. Brenner, Electrodeposition of alloys principles and practice, Vol. 1, Academic Press, New York, 1963.
  28. N. Touabi, S. Martinez, M. Bounoughaz, Int. J. Electrochem. Sci, 2015, 10, 7227-7240.
  29. K. Marianna, M. Ritala, H. Saloniemi, M. Leskela, T. Sajavaara, E. Rauhalab, J. Electrochem. Soc, 147, 2000, 147(3), 1080-1087. https://doi.org/10.1149/1.1393317
  30. S. Arratia, H.A. Meneses, R.S. Guzman, C.C. Jara, Lat. Am. Appl. Res, 2012, 42(4), 371-376.
  31. J.U. Emmanuel, I.A. Udoetok, N.W. Akpanudo, IOSR J. Appl. Chem, 2013, 5, 50-55.
  32. A. Tang, Z. Li, F. Wang, M. Dou, Y. Pan, J. Guan, Appl. Surf. Sci, 2017, 402, 70-77. https://doi.org/10.1016/j.apsusc.2017.01.079
  33. X. Xu, F. Wang, Z. Li, J. Liu, J. Ji, J. Chen, Electrochim. Acta, 2013, 87, 511-517. https://doi.org/10.1016/j.electacta.2012.10.003
  34. T. Fuchigami, S. Inagi, M. Atobe, Fundamentals and applications of organic electrochemistry, John Wiley & Sons, United Kingdom, 2014.
  35. W.D. Shahizuan, Y. Mohd, J. Sci. Technol, 2012, 4(1), 49-60.
  36. A. Ullah, A. Rauf, U.A. Rana, R. Qureshi, M.N. Ashiq, H. Hussain, H.-B. Kraatz, A. Badshah, A. Shah, J. Electrochem. Soc, 2015, 162(3), H157-H163. https://doi.org/10.1149/2.0881503jes
  37. A.A. Akl, A.S. Hassanien, Int. J. Adv. Res, 2014, 2(11), 1-9.
  38. L. Choubrac, A. Lafond, C. Guillot-Deudon, Y. Moelo, S. Jobic, Inorg. Chem, 2012, 51(6), 3346-3348. https://doi.org/10.1021/ic202569q
  39. J.L. van Heerden, R. Swanepoel, Thin Solid Films, 1997, 299(12), 72-77. https://doi.org/10.1016/S0040-6090(96)09281-4
  40. M. Li, W.H. Zhou, J. Guo, Y.L. Zhou, Z.L. Hou, J. Jiao, Z.J. Zhou, Z.L. Du, S.X. Wu, J. Phys. Chem. C, 2012, 116(50), 26507-26516. https://doi.org/10.1021/jp307346k
  41. M.C. Sekou, L. Wang, X. Zhang, Nanotechnology, 2013, 24, 495401-495410. https://doi.org/10.1088/0957-4484/24/49/495401
  42. D.K. Kaushik, T.N.Rao, A.Subrahmanyam, Surf. Coat. Tech, 2017, 314, 85-91. https://doi.org/10.1016/j.surfcoat.2016.09.034
  43. S.B. Arvid, B. Marsen, S. Cinque, U. Thomas, K. Reiner, S. Schorr, H.W. Schock, Prog. Photovolt.: Res. Appl, 2011, 19(1), 93-96. https://doi.org/10.1002/pip.976
  44. A.J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films, 2011, 29(5), 051203. https://doi.org/10.1116/1.3625249
  45. C. Ivan, B. Ester, M. Rafael, F. Diego, L.T. Stoyanova, C.B. Juan, Boletin de la Sociedad Espanola de Ceramica y Vidrio, 2015, 54(5), 175-180. https://doi.org/10.1016/j.bsecv.2015.09.003
  46. M.N. Shinde, P.D. Dubal, S.D. Dhawale, D.C. Lokhande, H.J. Kim, H.J. Moon, Mater. Res. Bull, 2012, 47(2), 302-307. https://doi.org/10.1016/j.materresbull.2011.11.020
  47. F. Aslan, A. Goktas, A. Tumbul, Mater. Sci. Semicon. Process, 2016, 43, 139-143. https://doi.org/10.1016/j.mssp.2015.12.011
  48. S. Islam, M.A. Hossain, H. Kabir, M. Rahaman, M.S. Bashar, M.A. Gafur, A. Kabir, M.M.R. Bhuiyan, F. Ahmed, N. Khatun, Int. J. Thin Film Sci. Tecnol, 2015, 3,155-161.
  49. H. Suarez, J.M. Correa, S.D. Cruz, C.A. Otalora, M. Hurtado, G. Gordillo, IEEE Transactions, 2013, 2585-2589.
  50. S. Alok, R. Manivannan, S.N. Victoria, Arabian J. Chem, 2015.
  51. B. Ananthoju, A. Kushwaha, F.J. Sonia, M. Aslam, AIP Conf. Proc., 2013, 1512, 706.
  52. S.M. Camara, L. Wang, X. Zhang, Nanotechnology, 2013, 24, 495401. https://doi.org/10.1088/0957-4484/24/49/495401
  53. S.N. Victoria, R. Prasad, R. Manivannan, Int. J. Electrochem. Sci, 2015, 10, 2220-2238.
  54. B.S. Swaroop, S.N. Victoria, R. Manivannan, J. Taiwan Inst. Chem. Eng, 2016, 64, 269-278. https://doi.org/10.1016/j.jtice.2016.04.007
  55. V. Gerardo, C.M. Fernandez, I. Gonazalez, ECS Trans, 2008, 15(1), 171-180.
  56. Z. Xinwei, H. Fan, Y. Tian, M. Zhang, X. Yan, RSC Adv, 2015, 5(30), 23401-23409. https://doi.org/10.1039/C4RA13776K