DOI QR코드

DOI QR Code

아미그달린 저감화 매실청의 독성동태학적 및 경구독성 연구

Toxicokinetics and oral toxicity of Maesil-cheongs with reduced amygdalin levels

  • 김현진 (서울여자대학교 식품응용시스템학부 식품공학전공) ;
  • 고미란 (서울여자대학교 식품응용시스템학부 식품공학전공) ;
  • 유진 (서울여자대학교 식품응용시스템학부 식품공학전공) ;
  • 황지수 (서울여자대학교 식품응용시스템학부 식품공학전공) ;
  • 최현우 (경기대학교 식품생물공학과) ;
  • 김현석 (경기대학교 식품생물공학과) ;
  • 최수진 (서울여자대학교 식품응용시스템학부 식품공학전공)
  • Kim, Hyeon-Jin (Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University) ;
  • Go, Mi-Ran (Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University) ;
  • Yu, Jin (Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University) ;
  • Hwang, Ji-Soo (Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University) ;
  • Choi, Hyun Woo (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Kim, Hyun-Seok (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Choi, Soo-Jin (Division of Applied Food System, Major of Food Science & Technology, Seoul Women's University)
  • 투고 : 2018.10.17
  • 심사 : 2018.10.26
  • 발행 : 2018.12.31

초록

본 연구에서는 플라즈마 및 UVC 처리에 의해 매실청에 존재하는 아미그달린 저감화 공정을 개발하여 아미그달린 저감화 매실청에 대한 독성을 독성동태학적 및 14일 반복 경구투여에 의해 평가하였다. 독성동태학적 연구 결과, 플라즈마 및 UVC 처리에 의한 아미그달린 저감화 매실청 투여에 의해 아미그달린의 경구 흡수량이 약 3.7, 3.4배 감소하여 저감화 효과를 확인할 수 있었다. 아미그달린 저감화 매실청의 14일 반복 경구독성시험 결과를 종합하면, 몸무게 변화, 식이 및 물 섭취량, 절대장기 및 상대 장기 무게, 혈액학적 및 혈청학적 분석, 조직 병리학적 분석에서 유의미한 독성현상이 관찰되지 않았다. 따라서 본 연구에서 개발 플라즈마 및 UVC 처리에 의한 아미그달린 저감화 매실청의 독성영향은 없는 것으로 보이며, 이러한 공정은 매실청뿐만 아니라 아미그달린 함유 다양한 제품의 저감화 공정에 활용될 수 있을 것이다.

In this study, the safety aspect of Maesil-cheongs with reduced amygdalin levels was investigated in terms of toxicokinetics and repeated oral toxicity. Plasma or UVC treatment was utilized to obtain Maesil-cheongs with reduced amygdalin levels. The toxicokinetic study demonstrated that the oral absorption of amygdalin decreased remarkably after a single-dose oral administration of both plasma- and UVC-treated Maesil-cheongs. The fourteen-day repeated oral toxicity study revealed that plasma- or UVC-treated Maesil-cheongs did not cause changes in body weight, food intake, water consumption, and absolute and relative organ weights. No significant effects on hematological and serum biochemical parameters were found. Histopathological examination showed no abnormality or toxicological change. These findings suggest that plasma- and UVC-treated Maesil-cheongs have no toxicity potential, and these processes will be useful to obtain products with safe, reduced amygdalin levels.

키워드

SPGHB5_2018_v50n6_629_f0001.png 이미지

Fig. 1. Schematic diagram for underwater plasma equipment.

SPGHB5_2018_v50n6_629_f0002.png 이미지

Fig. 2. HPLC chromatograms of amygdalin standard (A), prunasin standard (B), Maesil-cheong (C), plasma-treated Maesil-cheong (D), and UVC-treated Maesil-cheong (E). 1, amygdalin; 2, prunasin.

SPGHB5_2018_v50n6_629_f0003.png 이미지

Fig. 3. Plasma concentration-time profiles of plasma-treated or UVC-treated Maesil-cheong after a single-dose oral administration to rats.

SPGHB5_2018_v50n6_629_f0004.png 이미지

Fig. 4. Changes in body weight gain (A), food intake (B), and water consumption (C) after 14-day repeated oral administration of DW as a control, plasma-treated, or UVC-treated Maesil-cheong to rats.

SPGHB5_2018_v50n6_629_f0005.png 이미지

Fig. 5. Histopathological examination of kidney, liver, lung, and spleen after 14-day repeated oral administration of DW as a control, plasma-treated, or UVC-treated Maesil-cheong to rats. Images magnification at 50×.

Table 1. Toxicokinetic parameters and oral absorption of plasma- or UVC-treated Maesil-cheong after a single-dose oral administration to rats

SPGHB5_2018_v50n6_629_t0001.png 이미지

Table 2. Absolute organ weights of rats after 14-day repeated oral administration of plasma- or UVC-treated Maesil-cheong

SPGHB5_2018_v50n6_629_t0002.png 이미지

Table 4. Hematological and coagulation time values in rats after 14-day repeated oral administration of plasma- or UVC-treated Maesil-cheong

SPGHB5_2018_v50n6_629_t0003.png 이미지

Table 5. Serum biochemical values in rats after 14-day repeated oral administration of plasma- or UVC-treated Maesil-cheong

SPGHB5_2018_v50n6_629_t0004.png 이미지

Table 3. Organo-somatic indices of rats after 14-day repeated oral administration of plasma- or UVC-treated Maesil-cheong

SPGHB5_2018_v50n6_629_t0005.png 이미지

Table 6. Summary of histopathological findings of rats after 14-day repeated oral administration of plasma- or UVC-treated Maesil-cheong

SPGHB5_2018_v50n6_629_t0006.png 이미지

참고문헌

  1. Akyildiz BN, Kurtoglu S, Kondolot M, Tunc A. Cyanide poisoning caused by ingestion of apricot seeds. Ann. Trop. Paediatr. 30: 39-43 (2010) https://doi.org/10.1179/146532810X12637745451951
  2. Antonini E, Brunori M, Greenwood C, Malmstrom BG, Rotilio GC. The Interaction of cyanide with cytochrome oxidase. Eur. J. Biochem. 23: 396-400 (1971) https://doi.org/10.1111/j.1432-1033.1971.tb01633.x
  3. Choi HJ, Kang OH, Park PS, Chae HS, Oh YC, Lee YS, Choi JG, Lee GH, Kweon OH, Kwon DY. Mume Fructus water extract inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages. J. Med. Food 10: 460-466 (2007) https://doi.org/10.1089/jmf.2006.198
  4. Chuda Y, Ono H, Ohnishi-Kameyama M, Matsumoto K, Nagata T, Kikuchi Y. Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc). J. Agr. Food Chem. 47: 828-831 (1999) https://doi.org/10.1021/jf980960t
  5. Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J. Bioenerg. Biomembr. 40: 533-539 (2008) https://doi.org/10.1007/s10863-008-9166-6
  6. da Silva VM, Sato JAP, Araujo JN, Squina FM, Muniz JRC, Riske KA, Garcia W. Systematic studies of the interactions between a model polyphenol compound and microbial ${\beta}$-glucosidases. PLoS ONE 12: 1-15 (2017)
  7. Egekeze JO, Oehme FW. Cyanides and their toxicity: a literature review. Vet. Quart. 2: 104-114 (1980) https://doi.org/10.1080/01652176.1980.9693766
  8. Feng D, Shen Y, Chavez ER. Effectiveness of different processing methods in reducing hydrogen cyanide content of flaxseed J. Sci. Food Agr. 83: 836-841 (2003) https://doi.org/10.1002/jsfa.1412
  9. Go MR, Kim HJ, Yu J, Choi SJ. Toxicity and toxicokinetics of amygdalin in Maesil (Prunus mume) syrup: protective effect of Maesil against amygdalin toxicity. J. Agr. Food Chem. 66: 11432-11440 (2018) https://doi.org/10.1021/acs.jafc.8b03686
  10. Han JT, Lee SY, Kim KN, Baek NI, Rutin, antioxidant compound isolated from the fruit of Prunus memu, J. Korean Soc. Agric. Chem. Biotechnol. 44: 35-37 (2001)
  11. Hughes C, Lehner F, Dirikolu L, Harkins D, Boyles J, McDowell K, Tobin T, Crutchfield J, Sebastian M, Harrison L, Baskin SI, A simple and highly sensitive spectrophotometric method for the determination of cyanide in equine blood. Toxicol. Mech. Method. 13: 129-138 (2003) https://doi.org/10.1080/15376510309847
  12. Hwang JY. Pharmacological effects of Maesil (Prunus Mume). Food Sci. Indu. 38: 112-119 (2005)
  13. Hwang JY, Ham. JW, Nam SH. The antioxidant activity of Maesil (Prunus Mume). Korean J. Food Sci. Technol. 36: 461-464 (2004)
  14. Jo MR, Bae SH, Go MR, Kim HJ, Hwang YG, Choi SJ. Toxicity and biokinetics of colloidal gold nanoparticles. Nanomaterials 5: 835-850 (2015) https://doi.org/10.3390/nano5020835
  15. Kang CK. A historical study on fruits in Korea. J. Korean Soc. Food Cult. 5: 301-312 (1990)
  16. Kim YD, Kang SH, Kang SK. Studies on the acetic acid fermentation using Maesil juice. J. Korean Soc. Food Sci. Nutr. 25: 695-700 (1996)
  17. Kim BJ, Kim JH, Kim HP, Heo MY. Biological screening of 100 plant extracts for cosmetic use (II): Anti-oxidative anticity and free redical scavenging activity. Int. J. Cosmetic Sci. 19: 299-307 (1997) https://doi.org/10.1111/j.1467-2494.1997.tb00194.x
  18. Kim EJ, Lee HJ, Jang JW, Kim IY, Kim DH, Kim HA, Lee SM, Jang HW, Kim SY, Jang YM, Im DK, Lee SH. Analytical determination of cyanide in Measil (Prunus mume) extracts. Korean J. Food Sci. Technol. 42: 130-135 (2010)
  19. Kim Y, Ximenes E, Mosier NS, Ladisch M.R. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb. Tech. 48: 408-415 (2011) https://doi.org/10.1016/j.enzmictec.2011.01.007
  20. Kim HS, Yoo HS. Preparing method of highly-dispersed Chinese yam flour using simultaneous treatment of UV irradiation and organic acid. Korean patent 10-1578040 (2015)
  21. Lee OK, Lee HJ, Shin YS, Ahn YG, Jo HJ, Shin HC, Kang HY. Quantitative anlaysis of the fruit flesh of Prunus mume Siebold & Zuccarni. Korean J. Medicinal Crop Sci. 15: 143-147 (2007)
  22. Lee JH, Na MS, Lee MY. Effects of ethanol extract of Prunus mume on the antioxidative system and lipid peroxidation on ethanolinduced hepatotoxicity in rat liver. Korean J. Food Preserv. 11: 71-78 (2004)
  23. Lim SJ, Eun JB. Processing and distribution of Maesil, Japanese apricot in Korea. Food Sci. Indu. 45: 2-9 (2012)
  24. Newmark J, Brady RO, Grimley PM, Gal AE, Waller SG, Thistlethwaite JR. Amygdalin (Laetrile) and prunasin ${\beta}$-glucosidases: distribution in germ-free rat and in human tumor tissue. P. Natl. Acad. Sci. USA. 78: 6513-6516 (1981) https://doi.org/10.1073/pnas.78.10.6513
  25. Otsuka T, Tsukamoto T, Tanaka H, Inada K, Utsunomiya H, Mizoshita T, Kumagai T, Katsuyama T, Miki K, Tatematsu M. Suppressive effects of fruit-juice concentrate of Prunus mume Sieb. et Zucc. (Japanese apricot, ume) on Helicobacter pylori-induced glandular stomach lesions in Mongolian gerbils. Asian Pac. J. Cancer P. 6: 337-341 (2005)
  26. Peng S, Cao Q, Qin Y, Li X, Liu G, Qu Y. An aldonolactonase AltA from Penicillium oxalicum mitigates the inhibition of ${\beta}$-glucosidase during lignocellulose biodegradation. Appl. Microbiol. Biot. 101: 3627-3636 (2017) https://doi.org/10.1007/s00253-017-8134-7
  27. Piirainen L, Peuhkuri K, Backstrom K, Korpela R, Salminen S. Prune juice has a mild laxative effect in adults with certain gastrointestinal symptoms. Nutr. Res. 27: 511-513 (2007) https://doi.org/10.1016/j.nutres.2007.06.008
  28. Poulton JE, Li CP. Tissue level compartmentation of (R)-amygdalin and amygdalin hydrolase prevents large-scale cyanogenesis in undamaged Prunus seeds. Plant Physiol. 104: 29-35 (1994) https://doi.org/10.1104/pp.104.1.29
  29. Sanchez-Verlaan P, Geeraerts T, Buys S, Riu-Poulenc B, Cabot C, Fourcade O, Megarbane B, Genestal M. An unusual cause of severe lactic acidosis: cyanide poisoning after bitter almond ingestion. Intens. Care Med. 37: 168-169 (2011) https://doi.org/10.1007/s00134-010-2029-8
  30. Shim JH, Park MW, Kim MR, Lim KT, Park ST. Screening of antioxidant in Fructus mume (Prunus Mume Sieb. et Zucc.) extract. J. Korean Soc. Agric. Chem. Biotechnol. 45: 119-123 (2002)
  31. Shim SM, Kwon H. Metabolites of amygdalin under simulated human digestive fluids. Int. J. Food Sci. Nutr. 61: 770-779 (2010) https://doi.org/10.3109/09637481003796314
  32. Shragg TA, Albertson TE, Fisher Jr CJ. Cyanide poisoning after bitter almond ingestion. Western J. Med. 136: 65-69 (1982)
  33. Tatsuma T, Tani K, Ogawa T, Oyama N. Interference-based amygdalin sensor with emulsin and peroxidase. Sensor. Actuat. B-Chem. 49: 268-272 (1998) https://doi.org/10.1016/S0925-4005(98)00150-6