Finslerian Hypersurface and Generalized β—Conformal Change of Finsler Metric

Shiv Kumar Tiwari* and Anamika Rai
Department of Mathematics, K. S. Saket Post Graduate College, Ayodhya, Faizabad-224 123, India
e-mail: sktiwarisaket@yahoo.com and anamikarai2538@gmail.com

Abstract. In the present paper, we have studied the Finslerian hypersurfaces and generalized β—conformal change of Finsler metric. The relations between the Finslerian hypersurface and the other which is Finslerian hypersurface given by generalized β—conformal change have been obtained. We have also proved that generalized β—conformal change makes three types of hypersurfaces invariant under certain conditions.

1. Introduction

Let (M^n, L) be an n—dimensional Finsler space on a differentiable manifold M^n equipped with the fundamental function $L(x, y)$. In 1984, Shibata [12] introduced the transformation of Finsler metric:

$$L(x, y) = f(L, \beta),$$

where $\beta = b_i(x) y^i$, $b_i(x)$ are components of a covariant vector in (M^n, L) and f is positively homogeneous function of degree one in L and β. This change of metric is called a β—change. In 2013, Prasad, B. N. and Kumari, Bindu [10] have considered the β—change of Finsler metric. In the year 2014 [13], we studied generalized β—change defining as

$$L(x, y) \rightarrow \mathcal{L}(x, y) = f(L, \beta^1, \beta^2, \ldots, \beta^m),$$

where f is any positively homogeneous function of degree one in $L, \beta^1, \beta^2, \ldots, \beta^m$, where $\beta^1, \beta^2, \ldots, \beta^m$ are linearly independent one-form.

* Corresponding Author.
Received March 11, 2015; accepted February 13, 2018.
2010 Mathematics Subject Classification: 53B40, 53C60.
Key words and phrases: generalized β—conformal change, generalized β—change, β—change, conformal change, Finslerian hypersurfaces, hyperplane of first, second and third kinds.
The conformal theory of Finsler spaces has been initiated by M. S. Knebelman [7] in 1929 and has been investigated in detail by many authors [1, 2, 3, 6] etc. The conformal change is defined as

\[L(x, y) \rightarrow e^{\sigma(x)} L(x, y), \]

where \(\sigma(x) \) is a function of position only and known as conformal factor.

We also studied the generalized \(\beta \)-conformal change of Finsler metric by taking

\[L = f(e^{\sigma(x)} L(x, y), \beta^1, \beta^2, \ldots, \beta^m), \]

where \(f \) is any positively homogeneous function of degree one in \(e^{\sigma L}, \beta^1, \beta^2, \ldots, \beta^m \).

On the other hand, in 1985, M. Matsumoto investigated the theory of Finslerian hypersurface [8]. He has defined three types of hypersurfaces that were called a hyperplane of the first, second and third kinds.

In the year 2009, B. N. Prasad and Gauri Shanker [11] studied the Finslerian hypersurfaces and \(\beta \)-change of Finsler metric and obtained different results in his paper. In the present paper, using the field of linear frame [5, 4, 9], we shall consider Finslerian hypersurfaces given by a generalized \(\beta \)-conformal change of a Finsler metric. Our purpose is to give some relations between the original Finslerian hypersurface and the other which is Finslerian hypersurface given by generalized \(\beta \)-conformal change. We have also obtained that a generalized \(\beta \)-conformal change makes three types of hypersurfaces invariant under certain conditions.

2. Finslerian Hypersurfaces

Let \(M^n \) be an \(n \)-dimensional manifold and \(F^n = (M^n, L) \) be an \(n \)-dimensional Finsler space equipped with the fundamental function \(L(x, y) \) on \(M^n \). The metric tensor \(g_{ij}(x, y) \) and Cartan’s \(C \)-tensor \(C_{ijk}(x, y) \) are given by

\[g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial y^i \partial y^j}, \quad C_{ijk} = \frac{1}{2} \frac{\partial g_{ij}}{\partial y^k}, \]

respectively and we introduce the Cartan’s connection \(\Gamma = (F^i_{jk}, N^i_j, C^i_{jk}) \) in \(F^n \).

A hypersurface \(M^{n-1} \) of the underlying smooth manifold \(M^n \) may be parametrically represented by the equation \(x^i = x^i(u^\alpha) \), where \(u^\alpha \) are Gaussian coordinates on \(M^{n-1} \) and Greek indices vary from 1 to \(n-1 \). Here, we shall assume that the matrix consisting of the projection factors \(B^i_{\alpha\beta} = \frac{\partial x^i}{\partial u^\alpha} \frac{\partial}{\partial u^\beta} \) is of rank \(n-1 \). The following notations are also employed:

\[B^i_{\alpha\beta} = \frac{\partial^2 x^i}{\partial u^\alpha \partial u^\beta}, \quad B^i_{\alpha\beta} = v^\alpha B^i_{\alpha\beta}. \]

If the supporting element \(y^i \) at a point \((u^\alpha) \) of \(M^{n-1} \) is assumed to be tangential to \(M^{n-1} \), we may then write \(y^i = B^i_{\alpha}(u)v^\alpha \), i.e. \(v^\alpha \) is thought of as the supporting
element of M_{n-1} at the point (u^a). Since the function \(L(u,v) = L(x(u), y(u,v)) \) gives rise to a Finsler metric of M_{n-1}, we get a \((n-1)\)-dimensional Finsler space $F^{n-1} = \{ M_{n-1}, L(u,v) \}$.

At each point (u^a) of F^{n-1}, the unit normal vector $N^i(u, v)$ is defined by
\[
(2.1) \quad g_{ij} B^i_\alpha N^j = 0, \quad g_{ij} N^i N^j = 1.
\]

If B^i_α, N_i is the inverse matrix of (B^i_α, N^i), we have
\[
B^i_\alpha B^j_\beta = \delta^i_\beta, \quad B^i_\alpha N_i = 0, \quad N_i N_i = 1 \quad \text{and} \quad B^i_\alpha B^j_\beta + N^i N_j = \delta^i_j.
\]

Making use of the inverse matrix $(g^{\alpha\beta})$ of $(g_{\alpha\beta})$, we get
\[
(2.2) \quad B^i_\alpha = g^{\alpha\beta} g_{ij} B^j_\beta, \quad N_i = g_{ij} N^j.
\]

For the induced Cartan’s connection $ICT = (F^\alpha_{\beta\gamma}, N^\alpha_{\beta}, C^\alpha_{\beta\gamma})$ on F^{n-1}, the second fundamental $h-$tensor $H_{\alpha\beta}$ and the normal curvature H_α are respectively given by [9]
\[
(2.3) \quad H_{\alpha\beta} = N_i (B^i_\alpha + F^i_{jk} B^j_\alpha B^k_\beta) + M_\alpha H_\beta,
\quad H_\alpha = N_i (B^i_\alpha + N^i B^j_\beta),
\]

where
\[
M_\alpha = C_{ijk} B^i_\alpha N^j N^k.
\]

Contracting $H_{\alpha\beta}$ by v^α, we immediately get $H_{\beta\alpha} = H_{\alpha\beta} v^\alpha = H_\beta$. Furthermore the second fundamental $v-$tensor $M_{\alpha\beta}$ is given by [8]
\[
(2.4) \quad M_{\alpha\beta} = C_{ijk} B^i_\alpha B^j_\beta N^k.
\]

3. Finsler Space with Generalized $\beta-$Conformal Change

Let (M^n, L) be a Finsler space F^n, where M^n is an $n-$dimensional differentiable manifold equipped with a fundamental function L. A change in fundamental metric L, defined by equation (1.4), is called generalized $\beta-$conformal change, where $\sigma(x)$ is conformal factor and function of position only and $\beta^1, \beta^2, \ldots, \beta^m$ all are linearly independent one-form and defined as $\beta^r = b^r_i y^i$.

Homogeneity of f gives
\[
(3.1) \quad e^{\sigma} L f_0 + f_r \beta^r = f,
\]

where the subscripts ‘0’ and ‘r’ denote the partial derivative with respect to L and β^r respectively. The letters r, s, t, r' and s' vary from 1 to m throughout the paper. Summation convention is applied for the indices r, s, t, r' and s'. If we write $F^n = (M^n, L)$, then the Finsler space \tilde{F}^n is said to be obtained from F^n by
generalized $\beta-$conformal change. The quantities corresponding to \mathcal{F}^n are denoted by putting bar on those quantities.

To find the relation between fundamental quantities of (M^n, L) and (M^n, \mathcal{L}), we use the following results:

\begin{align}
\dot{\partial}_i \beta^r &= b^r_i, \quad \dot{\partial}_i L = l_i, \quad \dot{\partial}_i l_i = L^{-1}h_{ij},
\end{align}

where $\dot{\partial}_i$ stands for $\frac{\partial}{\partial y^i}$ and h_{ij} are components of angular metric tensor of (M^n, L) given by

\begin{align}
h_{ij} &= g_{ij} - l_i l_j = L \dot{\partial}_i \dot{\partial}_j L.
\end{align}

Differentiating (3.1) with respect to L and β^s respectively, we get

\begin{align}
\dot{e}^\sigma L f_{00} + f_{0r} \beta^r = 0
\end{align}

and

\begin{align}
\dot{e}^\sigma L f_{0s} + f_{rs} \beta^r = 0.
\end{align}

The successive differentiation of (1.4) with respect to y^i and y^j give

\begin{align}
\dot{\partial}_i &= e^\sigma f_{0i} + f_r b^r_i,
\end{align}

\begin{align}
\dot{\partial}_i m^r_j &= e^\sigma f_{0i} h_{ij} + e^{2\sigma} f_{00} l_i l_j + e^\sigma f_{0r} (b^r_i l_j + b^r_j l_i) + f_{fr} b^r_i b^s_j.
\end{align}

Using equations (3.3) and (3.4) in equation (3.6), we have

\begin{align}
\bar{h}_{ij} &= e^\sigma f_{00} h_{ij} + e^{2\sigma} f_{00} l_i l_j + e^\sigma f_{0r} (b^r_i l_j + b^r_j l_i) + f_{fr} b^r_i b^s_j.
\end{align}

If we put $m^r_j = b^r_i - \frac{\beta^r_j}{L} l_i$, equation (3.7) may be written as

\begin{align}
\bar{h}_{ij} &= e^\sigma f_{00} h_{ij} + f_{fr} m^r_i m^s_j.
\end{align}

From equations (3.5) and (3.8), we get the following relation between metric tensors of (M^n, L) and (M^n, \mathcal{L})

\begin{align}
\bar{g}_{ij} &= e^\sigma f_{00} g_{ij} + e^\sigma \left(e^\sigma f_{00} - \frac{f_{00}}{L} \right) l_i l_j + f_{fr} m^r_i m^s_j

+ e^\sigma f_{0r} (b^r_i l_j + b^r_j l_i) + f_{fr} b^r_i b^s_j.
\end{align}

Now,

\begin{align}
(a) \quad \dot{\partial}_i m^r_j &= -\frac{1}{L} \left(m^r_i l_j + \frac{\beta^r}{L} h_{ij} \right),
\end{align}

\begin{align}
(b) \quad \dot{\partial}_i f &= e^\sigma f_{0i} + f_r b^r_i,
\end{align}

\begin{align}
(c) \quad \dot{\partial}_i f_{rs} &= e^\sigma f_{rs0} l_i + f_{rst} b^s_i.
\end{align}
Differentiating equation (3.8) with respect to y^k and using equations (3.2), (3.3), (3.4), (3.5), (3.9) and (3.10), we get

\begin{equation}
\overline{C}_{ijk} = p_0 C_{ijk} + p_1 (h_{ij} m^r_k + h_{jk} m^r_i + h_{ki} m^r_j) + p_2 m^r_i m^s_j m^t_k,
\end{equation}

where

\begin{equation}
\begin{aligned}
p_0 &= e^\sigma \frac{f f_0}{L} C_{ijk}, \\
p_1 &= e^\sigma \frac{f_0 f_r + f f_0}{2 L}, \\
p_2 &= \frac{1}{2} (f rs f_t + f st f_r + f tr f_s + f f rs t).
\end{aligned}
\end{equation}

4. Hypersurfaces Given by a Generalized β–Conformal Change

Consider a Finslerian hypersurface $F^{n-1} = \{M^{n-1}, \bar{L}(u, v)\}$ of the F^n and another Finslerian hypersurface $F^{n-1} = \{M^{n-1}, L(u, v)\}$ of the F^n given by generalized β–conformal change. Let N^i be the unit vector at each point of F^{n-1} and (B^a_i, N_i) be the inverse matrix of (B^a_i, N_i). The function B^a_i may be considered as components of $(n-1)$ linearly independent tangent vectors of F^{n-1} and they are invariant under generalized β–conformal change. Thus, we shall show that a unit normal vector $\overline{N}(u, v)$ of \overline{F}^{n-1} is uniquely determined by

\begin{equation}
\overline{g}_{ij} B^a_i N^j = 0, \quad \overline{g}_{ij} \overline{N}^i \overline{N}^j = 1.
\end{equation}

Contracting (3.9) by $N^i N^j$ and paying attention to (2.1) and the fact that $l_i N^i = 0$, we have

\begin{equation}
\overline{g}_{ij} N^i N^j = p_0 + p (b^r_i b^s_j N^i N^j),
\end{equation}

where $p = f f_{rs} + f_r f_s$. Therefore, we obtain

\begin{equation}
\overline{g}_{ij} \left(\pm \frac{N^i}{\sqrt{p_0 + p (b^r_i b^s_j N^i N^j)}} \right) \left(\pm \frac{N^j}{\sqrt{p_0 + p (b^r_i b^s_j N^i N^j)}} \right) = 1.
\end{equation}

Hence, we can put

\begin{equation}
\overline{N}^i = \frac{N^i}{\sqrt{p_0 + p (b^r_i b^s_j N^i N^j)}},
\end{equation}

where we have chosen the positive sign in order to fix an orientation.

Using equations (3.9), (4.3) and from first condition of (4.1), we have

\begin{equation}
B^a_i (2 p_1 L l_i + p b^r_i) \sqrt{\frac{b^r_j N^j}{p_0 + p (b^r_i b^s_j N^i N^j)}} = 0.
\end{equation}
If \(B_i^i(2p_iL_i + pb_i^n) = 0 \), then contracting it by \(v^\alpha \) and using \(y^i = B_i^i v^\alpha \), we get \(L = 0 \) or \(\beta^\alpha = 0 \) which is a contradiction with the assumption that \(L > 0 \). Hence \(b_j \), \(N_j = 0 \). Therefore equation (4.3) is written as

\[
(4.5) \quad N^i = \frac{N^i}{\sqrt{p_0}}.
\]

Summarizing the above, we obtain

Proposition 4.1. For a field of linear frame \((B_1^i, B_2^i, \ldots, B_{n-1}^i; N^i) \) of \(F^n \), there exists a linear frame \((B_1^i, B_2^i, \ldots, B_{n-1}^i, N^i = \frac{N^i}{\sqrt{p_0}}) \) of \(\overline{F^n} \) such that (4.1) is satisfied along \(F^{n-1} \) and then \(b_i \) is tangential to both of the hypersurfaces \(F^{n-1} \) and \(\overline{F^{n-1}} \).

The quantities \(B_\alpha^i \) are uniquely defined along \(F^{n-1} \) by

\[
B_\alpha^i = \overline{\gamma}^{\alpha\beta} \overline{g}_{ij} B_\beta^j
\]

where \(\overline{\gamma}^{\alpha\beta} \) is the inverse matrix of \(\overline{g}_{\alpha\beta} \). Let \((\overline{B}_i^i, \overline{N}^i) \) be the inverse matrix of \((B_\alpha^i, N^i) \), then we have

\[
B_\alpha^i \overline{B}_j^i = \delta_\alpha^j, \quad B_\alpha^i \overline{N}_i = 0, \quad \overline{N}^i \overline{N}_i = 1.
\]

Furthermore \(B_\alpha^i \overline{B}_j^i + \overline{N}^i \overline{N}_j = \delta_i^j \). We also get \(\overline{N}_i = \overline{g}_{ij} \overline{N}_j \) which in view of (3.5), (3.9) and (4.5) gives

\[
(4.6) \quad \overline{N}_i = \sqrt{p_0} N_i.
\]

We denote the Cartan’s connection of \(F^n \) and \(\overline{F^n} \) by \((\overline{F}^i_{jk}, N^i_j, C^i_{jk}) \) and \((\overline{F}^i_{jk}, N^i_{\overline{j}}, \overline{C}^i_{\overline{j}k}) \) respectively and put \(D^i_{jk} = \overline{F}^i_{jk} - F^i_{jk} \) which will be called difference tensor. We choose the vector field \(b^i \) in \(F^n \) such that

\[
(4.7) \quad D^i_{jk} = A_{jk} b^i + B_{jk} l^i + \delta^i_j D_k + \delta^i_k D_j,
\]

where \(A_{jk} \) and \(B_{jk} \) are components of a symmetric covariant tensor of second order and \(D_i \) are components of a covariant vector. Since \(N_i b_j = 0 \), \(N_i l^i = 0 \) and \(\delta^i_j N_i B_\alpha^i = 0 \), from (4.7), we get

\[
(4.8) \quad N_i D^i_{jk} B_\beta^k + B_\beta^k B^i_{jk} = 0 \quad \text{and} \quad N_i D^i_{\overline{k}k} B_\overline{\beta}^k = 0.
\]

Therefore, from (2.3) and (4.6), we get

\[
(4.9) \quad \overline{H}_\alpha = \sqrt{p_0} H_\alpha.
\]

If each path of a hypersurface \(F^{n-1} \) with respect to the induced connection also a path of the enveloping space \(F^n \), then \(F^{n-1} \) is called a hyperplane of the first
A hyperplane of the first kind is characterized by $H_\alpha = 0$ [8]. Hence from (4.9), we have

Theorem 4.1. If $b^r_i(x)$ be a vector field in F^n satisfying (4.7), then a hypersurface F^{n-1} is a hyperplane of the first kind if and only if the hypersurface \mathcal{F}^{n-1} is a hyperplane of the first kind.

Next contracting (3.11) by $B^i_\alpha N^j N^k$ and paying attention to (4.5), $m^r_i N^i = 0$, $h_{jk} N^j N^k = 1$ and $h_{ij} B^i_\alpha N^j = 0$, we get

$$\overline{M}_\alpha = M_\alpha + \frac{p_1}{p_0} m^r_i B^i_\alpha.$$

From (2.3), (4.6), (4.8), we have

(4.10)

$$\overline{\Pi}_{\alpha\beta} = \sqrt{p_0} H_{\alpha\beta}.$$

If each $h-$path of a hypersurface F^{n-1} with respect to the induced connection is also $h-$path of the enveloping space F^n, then F^{n-1} is called a hyperplane of the second kind. A hyperplane of the second kind is characterized by $H_{\alpha\beta} = 0$ [8]. Since $H_{\alpha\beta} = 0$ implies that $H_\alpha = 0$ from (4.9) and (4.10), we have the following:

Theorem 4.2. If $b^r_i(x)$ be a vector field in F^n satisfying (4.7), then a hypersurface F^{n-1} is a hyperplane of the second kind if and only if the hypersurface \mathcal{F}^{n-1} is a hyperplane of the second kind.

Finally contracting (3.11) by $B^i_\alpha B^j_\beta N^k$ and paying attention to (4.5), we have

(4.11)

$$\overline{M}_{\alpha\beta} = \sqrt{p_0} M_{\alpha\beta}.$$

If the unit normal vector of F^{n-1} is parallel along each curve of F^{n-1}, then F^{n-1} is called a hyperplane of third kind. A hyperplane of the third kind is characterized by $H_{\alpha\beta} = 0, M_{\alpha\beta} = 0$ [8]. From (4.10) and (4.11), we have:

Theorem 4.3. If $b^r_i(x)$ be a vector field in F^n satisfying (4.7), then a hypersurface F^{n-1} is a hyperplane of the third kind if and only if the hypersurface \mathcal{F}^{n-1} is a hyperplane of the third kind.

References

S. K. Tiwari and A. Rai

