DOI QR코드

DOI QR Code

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors

  • Balamurugan, Chandran (School of Materials Science and Engineering, Chonnam National University,) ;
  • Song, Sun-Ju (School of Materials Science and Engineering, Chonnam National University,) ;
  • Kim, Ho-Sung (School of Materials Science and Engineering, Chonnam National University,)
  • Received : 2017.11.10
  • Accepted : 2017.12.21
  • Published : 2018.01.31

Abstract

Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.

Keywords

References

  1. M. F. Struve, J. N. Brisbois, R. ArdenJames, M. W. Marshall, and D. C. Dorman, "Neurotoxicological Effects Associated with Short-Term Exposure of Sprague-Dawley Rats to Hydrogen Sulfide," Neurotoxicology, 22 [3] 375-85 (2001). https://doi.org/10.1016/S0161-813X(01)00021-3
  2. Y. G. Yu, D. K. Ning, and L. G. Qian, "The First-Principle Calculation of $H_2S$ Adsorption and Decomposition on the ZnO (0001) Surface," Chin. J. Struct. Chem., 29 1139-46 (2010).
  3. C. Balamurugan and D. W. Lee, "Perovskite Hexagonal $YMnO_3$ Nanopowder as p-type Semiconductor Gas Sensor for $H_2S$ Detection," Sens. Actuators, B, 221 857-66 (2015). https://doi.org/10.1016/j.snb.2015.07.018
  4. Y. Zhang, Z. H. Tang, Z. Ren, S. L. Qu, M. H. Liu, L. S. Liu, and Z. S. Jiang, "Hydrogen Sulfide, the Next Potent Preventive and Therapeutic Agent in Aging and Age-Associated Diseases," Mol. Cell. Biol., 33 [6] 1104-13 (2013). https://doi.org/10.1128/MCB.01215-12
  5. C. Balamurugan, S. Arunkumar, and D.-W. Lee, "Hierarchical 3D Nanostructure of $GdInO_3$ and Reduced-Graphene-Decorated $GdInO_3$ Nanocomposite for CO Sensing Applications," Sens. Actuators, B, 234 155-66 (2016). https://doi.org/10.1016/j.snb.2016.04.043
  6. C. Balamurugan, A. R. Maheswari, and D.-W. Lee, "Structural, Optical, and Selective Ethanol Sensing Properties of p-type Semiconducting $CoNb_2O_6$ Nanopowder," Sens. Actuators, B, 205 [15] 289-97 (2014). https://doi.org/10.1016/j.snb.2014.08.076
  7. C. Balamurugan, D. W. Lee, A. R. Maheswari, and M. Parmar, "Porous Wide Band Gap $BiNbO_4$ Ceramic Nanopowder Synthesised by Low Temperature Solution-Based Method for Gas Sensing Applications," RSC Adv., 4 54625-30 (2014). https://doi.org/10.1039/C4RA08898K
  8. F. Menil, V. Coillard, and C. Lucat, "Critical Review of Nitrogen Monoxide Sensors for Exhaust Gases of Lean Burn Engines," Sens. Actuators, B, 67 [1-2] 1-23 (2000). https://doi.org/10.1016/S0925-4005(00)00401-9
  9. S. Zhuiykov and N. Miura, "Development of Zirconia-Based Potentiometric $NO_x$ Sensors for Automotive and Energy Industries in the Early 21st. Century: What are the Prospects for Sensors?," Sens. Actuators, B, 121 [2] 639-51 (2007). https://doi.org/10.1016/j.snb.2006.03.044
  10. A. R. Phani, S. Manorams, and V. J. Rao, "Preparation, Characterization and Electrical Properties of $SnO_2$ Based Liquid Petroleum Gas Sensor," Mater Chem. Phys., 58 [2] 101-8 (1999). https://doi.org/10.1016/S0254-0584(98)00251-X
  11. Y. D. Wang, X. H. Wu, and Z. L. Zhou, "Novel High Sensitivity and Selectivity Semiconductor Gas Sensor Based on the p+n Combined Structure," Solid-State Electron., 44 [9] 1603-7 (2000). https://doi.org/10.1016/S0038-1101(00)00106-4
  12. S. K. Pandey, K. H. Kim, and K. T. Tang, "A Review of Sensor-Based Methods for Monitoring Hydrogen Sulfide," Trends Anal. Chem., 32 87-99 (2012). https://doi.org/10.1016/j.trac.2011.08.008
  13. C. Balamurugan and D. W. Lee, "A Selective $NH_3$ Gas Sensor Based on Mesoporous p-type $NiV_2O_6$ Semiconducting Nanorods Synthesized Using Solution Method," Sens. Actuators, B, 192 414-22 (2014). https://doi.org/10.1016/j.snb.2013.10.085
  14. T. H. Kim, J. W. Yoon, and J. H. Lee, "Avolatile Organic Compound Sensor Using Porous $Co_3O_4$ Spheres," J. Korean Ceram. Soc., 53 [2] 134-38 (2016). https://doi.org/10.4191/kcers.2016.53.2.134
  15. Y.-J. Jeong, C. Balamurugan, and D.-W. Lee, "Enhanced $CO_2$ Gas-Sensing Performance of ZnO Nanopowder by La Loaded during Simple Hydrothermal Method," Sens. Actuators, B, 229 288-96 (2016). https://doi.org/10.1016/j.snb.2015.11.093
  16. Z. U. Abideen, J.-H. Kim, J. H. Lee, J. Y. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Electrspun Metal Oxide Composite Nanofibers Gas Sensors: A Review," J. Korean Ceram. Soc., 54 [5] 366-79 (2017). https://doi.org/10.4191/kcers.2017.54.5.12
  17. Z. Hao, Qi, M. Chuai, B. Xiao, T. Yang, Y. Luo, and M. Zhang, "Synthesis of Dandelion-Like NiO Hierarchical Structures Assembled with Dendritic Units and their Performances for Ethanol Gas Sensing," New J. Chem., 39 7873-78 (2015). https://doi.org/10.1039/C5NJ01523E
  18. N. Savage, B. Chwieroth, A. Ginwalla, B. R. Patton, S. A. Akbar, and P. K. Dutta, "Composite n-p Semiconducting Titanium Oxides as Gas Sensors," Sens. Actuators, B, 79 [1] 17-27 (2001). https://doi.org/10.1016/S0925-4005(01)00843-7
  19. G. Korotcenkov, "Practical Aspects in Design of One-Electrode Semiconductor Gas Sensors: Status Report," Sens. Actuators, B, 121 [2] 664-78 (2007). https://doi.org/10.1016/j.snb.2006.04.092
  20. A. R. Phani, S. V. Manorama, and V. J. Rao, "X-Ray Photoelectron Spectroscopy Studies on Pd Doped $SnO_2$ Liquid Petroleum Gas Sensor," Appl. Phys. Lett., 71 [16] 2358-60 (1997). https://doi.org/10.1063/1.120557
  21. C. Moure and O. Pena, "Recent Advances in Perovskites: Processing and Properties," Prog. Solid State Chem., 43 [4] 123-48 (2015). https://doi.org/10.1016/j.progsolidstchem.2015.09.001
  22. J. Malowney, N. Mestres, X. Borrise, A. Calleja, R. Guzman, J. Llobet, J. Arbiol, T. Puig, X. Obradors, and J. Bausells, "Functional Oxide Nanostructures Written by EBL on Insulating Single Crystal Substrates," Microelectron. Eng., 110 94-9 (2013). https://doi.org/10.1016/j.mee.2013.02.032
  23. M. A. Pena and J. L. G. Fierro, "Chemical Structures and Performance of Perovskite Oxides," Chem. Rev., 101 [7] 1981-2018 (2001). https://doi.org/10.1021/cr980129f
  24. S. Mathur, H. Shen, N. Lecerf, A. Kjekshus, H. Fjellvag, and G. F. Goya, "Nanocrystalline Orthoferrite $GdFeO_3$ from a Novel Heterobimetallic Precursor," Adv. Mater., 14 [19] 1405-9 (2002). https://doi.org/10.1002/1521-4095(20021002)14:19<1405::AID-ADMA1405>3.0.CO;2-B
  25. S. Palimar, S. D. Kaushik, V. Siruguri, D. Swain, A. E. Viegas, C. Narayana, and N. G. Sundaram, "Investigation of Ca Substitution on the Gas Sensing Potential of $LaFeO_3$ Nanoparticles towards Low Concentration $SO_2$ Gas," Dalton Trans., 45 13547-55 (2016). https://doi.org/10.1039/C6DT01819J
  26. X. Li, C. Tang, M. Ai, L. Dong, and Z. Xu, "Controllable Synthesis of Pure-Phase Rare-Earth Orthoferrites Hollow Spheres with a Porous Shell and their Catalytic Performance for the CO + NO Reaction," Chem. Mater., 22 4879-89 (2010). https://doi.org/10.1021/cm101419w
  27. V. V. Kharton, A. A. Yaremchenko, A. V. Kovalevsky, A. P. Viskup, E. N. Naumovich, and P. F. Kerko, "Perovskite-Type Oxides for High-Temperature Oxygen Separation Membranes," J. Membr. Sci., 163 [2] 307-17 (1999). https://doi.org/10.1016/S0376-7388(99)00172-6
  28. E. Traversa, S. Matsushima, G. Okada, Y. Sadaoka, Y. Sakai, and W. Watanabe, "$NO_2$ Sensitive $LaFeO_3$ Thin Films Prepared by r.f. Sputtering," Sens. Actuators, B, 25 [1-3] 661-64 (1995). https://doi.org/10.1016/0925-4005(95)85146-1
  29. V. Bedekar, O. D. Jayakumar, J. Manjanna, and A. K. Tyagi, "Synthesis and Magnetic Studies of Nano-Crystalline $GdFeO_3$," Mater. Lett., 62 [23] 793-95 (2008).
  30. R. Shukla, V. Grover, S. K. Deshpande, D. Jain, and A. K. Tyagi, "Synthesis and Structural and Electrical Investigations of a Hexagonal $Y_{1-x}Gd_xInO_3$ (0.0 ${\leq}$ x ${\leq}$ 1.0) System Obtained via Metastable C-Type Intermediates," Inorg. Chem., 52 [22] 13179-87 (2013). https://doi.org/10.1021/ic402085w
  31. D. H. Kuo and K. C. Huang, "Phase Composition and Properties of Solid Solutions of $GdFeO_3-GdInO_3$ Bulks," Ceram. Int., 34 [6] 1503-7 (2008). https://doi.org/10.1016/j.ceramint.2007.04.016
  32. L. G. Ortiz, J. R. Gomez, J. M. F. Alvarez, H. G. Bonilla, M. L. Olvera, V. M. R. Betancourtt, Y. V. Gomez, A. G. Cervantes, and J. S. Salazar, "Synthesis, Characterization and Sensitivity Tests of Perovskite-Type $LaFeO_3$ Nanoparticles in CO and Propane Atmospheres," Ceram. Int., 42 [16] 18821-27 (2016). https://doi.org/10.1016/j.ceramint.2016.09.027
  33. T. Tabari and H. Tavakkoli, "Fabrication and Characterization of Perovskite-Type Oxide $LaFe_{0.9}Co_{0.1}O_3$ Nanoparticles and Its Performance in Aerobic Oxidation of Thiols to Disulfide," Chin. J. Catal., 33 [11] 1791-96 (2012). https://doi.org/10.1016/S1872-2067(11)60442-7
  34. J. Zhu and A. Thomas, "Perovskite-Type Mixed Oxides as Catalytic Material for NO Removal," Appl. Catal., B, 92 [3-4] 225-33 (2009). https://doi.org/10.1016/j.apcatb.2009.08.008
  35. B. B. V. Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, "The Origin of Ferroelectricity in Magnetoelectric $YMnO_3$," Nat. Mater., 3 164-70 (2004). https://doi.org/10.1038/nmat1080
  36. J. Park, J.-G. Park, G. S. Jeon, H. Y. Choi, C. Lee, W. Jo, R. Bewley, K. A. McEwen, and T. G. Perring, "Magnetic Ordering and Spin-Liquid State of $YMnO_3$," Phys. Rev. B, 68 104426-6 (2003). https://doi.org/10.1103/PhysRevB.68.104426
  37. Y. Aikawa, T. Katsufuji, T. Arima, and K. Kato, "Effect of Mn Trimerization on the Magnetic and Dielectric Properties of Hexagonal $YMnO_3$," Phys. Rev. B, 71 184418-22 (2005). https://doi.org/10.1103/PhysRevB.71.184418
  38. M. Zaghrioui, V. Ta Phuoc, R. A. Souza, and M. Gervais, "Polarized Reflectivity and Lattice Dynamics Calculation of Multiferroic $YMnO_3$," Phys. Rev. B, 78 184305-12 (2008). https://doi.org/10.1103/PhysRevB.78.184305
  39. D. P. Kozlenko, S. E. Kichanov, S. Lee, J. G. Park, V. P. Glazkov, and B. N. Savenko, "High-Pressure Effect on the Crystal and Magnetic Structures of the Frustrated Antiferromagnet $YMnO_3$," JETP Lett., 82 [4] 193-97 (2005). https://doi.org/10.1134/1.2121813
  40. N. Natarajan, V. Samuel, R. Pasricha, and V. Ravi, "A Coprecipitation Technique to Prepare $BaNb_2O_6$," Mater. Sci. Eng. B, 117 [2] 169-71 (2005). https://doi.org/10.1016/j.mseb.2004.11.009
  41. R. Pasricha and V. Ravi, "Preparation of Nanocrystalline $MgNb_2O_6$ by Citrate Gel Method," Mater. Lett., 59 2146-48 (2005). https://doi.org/10.1016/j.matlet.2005.02.050
  42. V. Ravi, "A Coprecipitation Technique to Prepare $SrNb_2O_6$," Mater. Charact., 55 [1] 92-5 (2005). https://doi.org/10.1016/j.matchar.2005.04.002
  43. V. V. Deshpande, M. M. Patil, S. C. Navale, and V. Ravi, "A Coprecipitation Technique to Prepare $ZnNb_2O_6$ Powders," Bull. Mater. Sci., 28 [3] 205-7 (2005). https://doi.org/10.1007/BF02711248
  44. Y. Zhang, C. Liu, G. Pang, S. Jiao, S. Zhu, D. Wang, D. Liang, and S. Feng, "Hydrothermal Synthesis of a $CaNb_2O_6$ Hierarchical Micro/Nanostructure and Its Enhanced Photocatalytic Activity," Eur. J. Inorg. Chem., 2010 [8] 1275-82 (2010). https://doi.org/10.1002/ejic.200900853
  45. F. E. Osterloh, "Inorganic Materials as Catalysts for Photochemical Splitting of Water," Chem. Mater., 20 [1] 35-54 (2007). https://doi.org/10.1021/cm7024203
  46. S. N. Akihiko Kudo and H. Kato, "Overall Water Splitting into $H_2$ and $O_2$ under UV Irradiation on NiO-loaded $ZnNb_2O_6$ Photocatalysts Consisting of $d^{10}$ and $d^0$ Ions," Chem. Lett., 28 1197-98 (1999). https://doi.org/10.1246/cl.1999.1197
  47. R. C. Pullar, "The Synthesis, Properties, and Applications of Columbite Niobates ($M^{2+}Nb_2O_6$): A Critical Review," J. Am. Ceram. Soc., 92 [3] 563-77 (2009). https://doi.org/10.1111/j.1551-2916.2008.02919.x
  48. V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides; pp. 159-61, Cambridge University Press, New York, 1994.
  49. J. R. Istas, R. de Borger, L. de Temmerman, Guns, K. Meeus-Verdinne, A. Ronse, P. Scokart, and M. Termonia, "Effect of Ammonia on the Acidification of the Environment", European Communities Rept. No. EUR 11857 EN (1988).
  50. S. V. Krupa, "Effects of Atmospheric Ammonia ($NH_3$) on Terrestrial Vegetation: A Review," Environ. Pollut., 124 [2] 179-21 (2003). https://doi.org/10.1016/S0269-7491(02)00434-7
  51. Y. C. Liou, W. C. Tsai, and H. M. Chen, "Low-Temperature Synthesis of $BiNbO_4$ Ceramics Using Reaction-Sintering Process," Ceram. Int., 35 [6] 2119-22 (2009). https://doi.org/10.1016/j.ceramint.2008.11.030
  52. D. Liu, Y. Liu, S. Q. Huang, and X. Yao, "Phase Structure and Dielectric Properties of $Bi_2O_3-ZnO-Nb_2O_5$-based Dielectric Ceramics," J. Am. Chem. Soc., 76 [8] 2129-32 (1993).
  53. H. C. Ling, M. F. Yan, and W. W. Rhodes, "High Dielectric Constant and Small Temperature Coefficient Bismuth-Based Dielectric Compositions," J. Mater. Res., 5 [8] 1752-62 (1990).
  54. E. S. Kim and W. Choi, "Effect of Phase Transition on the Microwave Dielectric Properties of $BiNbO_4$," J. Eur. Ceram Soc., 26 [10-11] 1761-66 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.003
  55. B. Timmer and O. W. Berg, "Ammonia Sensors and their Applications-A Review," Sens. Actuators, B, 107 [2] 666-77 (2005). https://doi.org/10.1016/j.snb.2004.11.054
  56. T. Mokkelbost, H. L. Lein, P. E. Vullum, R. Holmestad, T. Grande, and M.-A. Einarsrud, "Thermal and Mechanical Properties of $LaNbO_4$-Based Ceramics," Ceram. Int., 35 [7] 2877-83 (2009). https://doi.org/10.1016/j.ceramint.2009.03.041
  57. Y. J. Hsiao, T. H. Fang, Y. S. Chang, Y. H. Chang, C. H. Liu, L. W. Ji, and W. Y. Jywe, "Structure and Luminescent Properties of $LaNbO_4$ Synthesized by Sol-Gel Process," J. Lumin., 126 [2] 866-70 (2007). https://doi.org/10.1016/j.jlumin.2007.01.005
  58. R. Haugsrud and T. Norby, "Proton Conduction in Rare Earth Ortho-Niobates and Orthotantalates," Nat. Mater., 5 193-96 (2006). https://doi.org/10.1038/nmat1591
  59. R. Hauigsrud and T. Norby, "High-Temperature Proton Conductivity in Acceptor-Doped $LaNbO_4$," Solid State Ionics, 177 [13-14] 1129-35 (2006). https://doi.org/10.1016/j.ssi.2006.05.011
  60. C. Balamurugan, D.-W. Lee, and A. Subramani, "Preparation and LPG-Gas Sensing Characteristics of p-type Semiconducting $LaNbO_4$ Ceramic Material," Appl. Surf. Sci., 283 58-64 (2013). https://doi.org/10.1016/j.apsusc.2013.06.013
  61. Z. Zou, J. Ye, and H. Arakawa, "Photophysical and Photocatalytic Properties of $InMO_4$ (M = $Nb^{5+}$, $Ta^{5+}$) under Visible Light Irradiation," Mater. Res. Bull. 36 [7-8] 1185-93 (2001). https://doi.org/10.1016/S0025-5408(01)00607-9
  62. A. L. Petre, J. A. Perdigon-Melon, A. Gervasini, and A. Auroux, "Characterization and Reactivity of Group III Oxides Supported on Niobium Oxide," Catal. Today, 78 [1-4] 377-86 (2003). https://doi.org/10.1016/S0920-5861(02)00300-0
  63. Z. Zou, J. Ye, and H. Arakawa, "Structural Properties of $InNbO_4$ and $InTaO_4$: Correlation with Photocatalytic and Photophysical Properties," Chem. Phys. Lett., 332 [3-4] 271-77 (2000). https://doi.org/10.1016/S0009-2614(00)01265-3
  64. Z. Zou, J. Ye, K. Sayama, and H. Arakawa, "Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst," Nature, 414 625-27 (2001). https://doi.org/10.1038/414625a
  65. C. Balamurugan, E. Vijayakumar, and A. Subramania, "Synthesis and Characterization of $InNbO_4$ Nanopowder for Gas Sensors," Talanta, 88 115-20 (2012).
  66. C. Balamurugan, G. Bhuvanalogini, and A. Subramania, "Development of Nanocrystalline $CrNbO_4$ Based p-type Semiconducting Gas Sensor for LPG, Ethanol and Ammonia," Sens. Actuators, B, 168 165-71 (2012). https://doi.org/10.1016/j.snb.2012.04.002
  67. C. Balamurugana, A. Subashinia, G. N. Chaudharib, and A. Subramania, "Development of Wide Band Gap Sensor Based on $AlNbO_4$ Nanopowder for Ethanol," J. Alloys Compd., 526 110-15 (2012).
  68. D. H. Dawson and D. E. Williams, "Gas-Sensitive Resistors: Surface Interaction of Chlorine with Semiconducting Oxides," J. Mater. Chem., 6 409-14 (1996). https://doi.org/10.1039/jm9960600409
  69. V. Dusastre and D. E. Williams, "Gas-Sensitive Resistor Properties of the Solid Solution Series $Ti_x(Sn_{1-y}Sb_y)_{1-x}O_2$ (0 < x < 1, y=0, 0.01, 0.05)," J. Mater. Chem., 6 445-50 (1999).
  70. C. Balamurugan, D. W. Lee, and A. Subramania, "Selective Ethanol Gas Sensing Behavior of Mesoporous n-type Semiconducting $FeNbO_4$ Nanopowder Obtained by Niobium-Citrate Process," Curr. Appl. Phys., 14 [3] 439-46 (2014). https://doi.org/10.1016/j.cap.2013.11.052
  71. T. Yu, X. Cheng, X. Zhang, L. Sui, Y. Xu, S. Gao, H. Zhao, and L. Huo, "Highly Sensitive $H_2S$ Detection Sensor at Low Temperature Based on Hierarchically Structured NiO Porous Nanowall Arrays," J. Mater. Chem. A, 3 11991-99 (2015). https://doi.org/10.1039/C5TA00811E
  72. B. Fromme, d-d-Excitations in Transition-Metal Oxides: A Spin Polarized Electron Energy Loss (SPEELS) Spectroscopy Studies; Verlag Berlin Heidelberg, New York, 2001.
  73. N. Ajoudanian and A. N. Jhieh, "Enhanced Photocatalytic Activity of Nickel Oxide Supported on Clinoptilolite Nanoparticles for the Photodegradation of Aqueous Cephalexin," Mater. Sci. Semicond. Process., 36 162-69 (2015). https://doi.org/10.1016/j.mssp.2015.03.042
  74. C. Cantalini, M. Post, D. Buso, M. Guglielmi, A. Martucci, "Gas Sensing Properties of Nanocrystalline NiO and $Co_3O_4$ in Porous Silica Sol-Gel Films," Sens. Actuators, B, 108 [1-2] 184-92 (2005). https://doi.org/10.1016/j.snb.2004.11.073
  75. J. A. Dirksen, K. Duval, and T. A. Ring, "NiO Thin-Film Formaldehyde Gas Sensor," Sens. Actuators, B, 80 [2] 106-15 (2001). https://doi.org/10.1016/S0925-4005(01)00898-X
  76. N. Miura, J. Wang, M. Nakatou, P. Elumalai, S. Zhuiykov, and M. Hasei, "High Temperature Operating Characteristics of Mixed-Potential-Type $NO_2$ Sensor Based on Stabilized-Zirconia Tube and NiO Sensing Electrode," Sens. Actuators, B, 114 [2] 903-9 (2006). https://doi.org/10.1016/j.snb.2005.08.009
  77. C. Y. Lee, C. M. Chiang, Y. H. Wang, and R. M. Ma, "A Self-Heating Gas Sensor with Integrated NiO Thin-Film for Formaldehyde Detection," Sens. Actuators, B, 122 [2] 503-10 (2007). https://doi.org/10.1016/j.snb.2006.06.018
  78. C. Luyo, R. Ionescu, L. F. Reyes, and Z. Topalian, "Gas Sensing Response of NiO Nanoparticles Films Made by Reactive Gas Deposition," Sens. Actuators, B, 138 [1] 14-20 (2009). https://doi.org/10.1016/j.snb.2008.11.057
  79. C. Balamurugan, Y. J. Jeong, and D. W. Lee, "Enhanced $H_2S$ Sensing Performance of a p-type Semiconducting PdO-NiO Nanoscale Heteromixture," Appl. Surf. Sci., 420 638-50 (2017). https://doi.org/10.1016/j.apsusc.2017.05.166
  80. V. D. Kapse, S. A. Ghosh, G. N. Chaudhari, F. C. Raghuwanshi, and D. D. Gulwade, "$H_2S$ Sensing Properties of La-Doped Nanocrystalline $In_2O_3$," Vacuum, 83 [2] 346-52 (2009). https://doi.org/10.1016/j.vacuum.2008.05.027
  81. S. Cho, J. Ma, Y. Kim, Y. Sun, G. Wong, and J. Ketterson, "Photoluminescence and Ultraviolet Lasing of Polycrystalline ZnO Thin Films Prepared by the Oxidation of the Metallic Zn," Appl. Phys. Lett., 75 2761 (1999). https://doi.org/10.1063/1.125141
  82. T. Yamamoto, T. Shiosaki, and A. Kawabata, "Characterization of ZnO Piezoelectric Films Prepared by rf Planarmagnetron Sputtering," J. Appl. Phys., 51 3113-20 (1980).
  83. K. Keis, E. Magnusson, H. Lindstorm, S. E. Lindquist, and A. Hagfeldt, "A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes," Sol. Energy Mater. Sol. Cells, 73 [1] 51-8 (2002). https://doi.org/10.1016/S0927-0248(01)00110-6
  84. H. Xu, X. Liu, D. Cui, M. Li, and M. Jiang, "A Novel Method for Improving the Performance of ZnO Gas Sensors," Sens. Actuators, B, 114 [1] 301-7 (2006). https://doi.org/10.1016/j.snb.2005.05.020
  85. N. V. Hieu, N. D. Khonang, D. D. Trung, L. D. Toan, and N. V. Duy, "Comparative Study on $CO_2$ and CO Sensing Performance of LaOCl-Coated ZnO Nanowires," J. Hazard Mater., 244 209-16 (2013).
  86. G. Centi, G. Golonelli, and G. Busca, "Modification of the Surface Pathways in Alkane Oxidation by Selective Doping of Broensted Acid Sites of Vanadyl Pyrophosphate," J. Phys. Chem., 94 [17] 6813-19 (1990). https://doi.org/10.1021/j100380a050
  87. P. Conception, A. Galli, J. M. Lopez Nieto, A. Dejoz, and M. I. Vazquez, "On the Influence of the Acid-Base Character of Catalysts on the Oxidative Dehydrogenation of Alkanes," Top. Catal., 3 [3-4] 451-60 (1996). https://doi.org/10.1007/BF02113867
  88. J. C. Vedrine, J. M. M. Millet, and J.-C. Volta, "Molecular Description of Active Sites in Oxidation Reactions: Acid-Base and Redox Properties, and Role of Water," Catal. Today, 32 [1-4] 115-23 (1996). https://doi.org/10.1016/S0920-5861(96)00185-X
  89. D. H. Kim, J. Y. Yoon, H. C. Park, and K. H. Kim, "$CO_2$ Sensing Characteristics of $SnO_2$ Thick Film by Coating Lanthanum Oxide," Sens. Actuators, B, 62 [1] 61-6 (2000). https://doi.org/10.1016/S0925-4005(99)00305-6
  90. A. Marsal, A. Cornet, and J. R. Morante, "Study of the CO and Humidity Interference in La Doped Tin Oxide $CO_2$ Gas Sensor," Sens. Actuators, B, 94 [3] 324-29 (2003). https://doi.org/10.1016/S0925-4005(03)00461-1
  91. C.-Y. Kim, J. W. Elam, P. C. Stair, and M. J. Bedzyk, "Effects of Off-Stoichiometry of $LiC_6$ on the Lithium Diffusion Mechanism and Diffusivity by First Principles Calculations," J. Phys. Chem. C, 114 2375-79 (2010). https://doi.org/10.1021/jp910134u
  92. S. Zafeiratos, F. E. Paloukis, M. M. Jaksic, and S. G. Neophytides, "Thermal Stability of Electrodeposited Nickel on Vanadium: Evidence for Oxygen Diffusion and Intermetallic Phase Formation," Surf. Sci., 552 [1-3] 215-28 (2004). https://doi.org/10.1016/j.susc.2004.01.021

Cited by

  1. Fabrication of a kinetically sprayed CuO ultra-thin film to evaluate CO gas sensing parameters vol.43, pp.20, 2018, https://doi.org/10.1039/c9nj00289h
  2. Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing vol.2, pp.7, 2019, https://doi.org/10.1021/acsanm.9b01176
  3. Ammonia gas sensing performance of nickel ferrite nanoparticles vol.6, pp.12, 2019, https://doi.org/10.1088/2053-1591/ab55b5
  4. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures vol.10, pp.7, 2018, https://doi.org/10.3390/nano10071392
  5. Recent Trends and Developments in Graphene/Conducting Polymer Nanocomposites Chemiresistive Sensors vol.13, pp.15, 2020, https://doi.org/10.3390/ma13153311
  6. Robust Room-Temperature NO2 Sensors from Exfoliated 2D Few-Layered CVD-Grown Bulk Tungsten Di-selenide (2H-WSe2) vol.13, pp.3, 2018, https://doi.org/10.1021/acsami.0c17924
  7. The Key Role of Active Sites in the Development of Selective Metal Oxide Sensor Materials vol.21, pp.7, 2021, https://doi.org/10.3390/s21072554