DOI QR코드

DOI QR Code

Neuroprotective and Anti-Neuroinflammatory Activities of Anthraquinones Isolated from Photorhabdus temperata Culture Broth

  • Yang, Eun-Ju (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Kim, Seo-Hyun (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Lee, Kyeong-Yeoll (College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Song, Kyung-Sik (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University)
  • Received : 2017.08.31
  • Accepted : 2017.10.18
  • Published : 2018.01.28

Abstract

Photorhabdus temperata (PT), a gram-negative bacterium, lives symbiotically within entomopathogenic nematodes. The insecticidal compounds derived from Photorhabdus are used as biopesticides in agriculture. However, the physiological properties are not well characterized. In the course of our screening for neuroprotective and anti-neuroinflammatory substances from natural products, the culture broth of PT showed considerable activities. By activity-guided purification, five anthraquinones, namely, 3-methoxychrysazine (1), 1,3-dimethoxy-8-hydroxy-9,10-anthraquinone (2), 1,3,8-trihydroxy-9,10-anthraquinone (3), 3,8-dihydroxy-1-methoxy-9,10-anthraquinone (4), and 1,3,4-trimethoxy-8-hydroxy-9,10-anthraquinone (5), were isolated from the ethyl acetate fraction of the PT culture broth. Among the isolated compounds, $75{\mu}M$ 3 significantly protected mouse hippocampal neuronal cells (HT22) against 5 mM glutamate-induced cell death via the inhibition of reactive oxygen species production, $Ca^{2+}$ influx, and lipid peroxidation. Additionally, 3 and 4 effectively suppressed the interferon-${\gamma}$-induced neuroinflammation of mouse-derived microglial cells (BV2) at 10 ng/ml, via the reduction of nitric oxide, interleukin-6, and tumor necrosis factor-${\alpha}$. Anthraquinones 3 and 4 derived from the PT culture broth are a potential starting point to discover neuroprotective and anti-neuroinflammatory drug leads. The novel compound 5 is reported for the first time in this study.

Keywords

References

  1. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG. 1992. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 112: 2-16.
  2. Bonadonna G, Monfardini S, De Lena M, Fossati-Bellani F. 1969. Clinical evaluation of adriamycin, a new antitumour antibiotic. Br. Med. J. 3: 503-506. https://doi.org/10.1136/bmj.3.5669.503
  3. Gessler NN, Egorova AS, Belozerskaia TA. 2013. Fungal anthraquinones (review). Prikl. Biokhim. Mikrobiol. 49: 109-123.
  4. Pankewitz F, Zollmer A, Graser Y, Hilker M. 2007. Anthraquinones as defensive compounds in eggs of Galerucini leaf beetles: biosynthesis by the beetles? Arch. Insect. Biochem. Physiol. 66: 98-108. https://doi.org/10.1002/arch.20215
  5. van Gorkom BA, Timmer-Bosscha H, de Jong S, van der Kolk DM, Kleibeuker JH, de Vries EG. 2002. Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1. Br. J. Cancer 86: 1494-1500. https://doi.org/10.1038/sj.bjc.6600255
  6. Lim W, Yang C, Bazer FW, Song G. 2017. Chrysophanol induces apoptosis of choriocarcinoma through regulation of ROS and the AKT and ERK1/2 pathways. J. Cell. Physiol. 232: 331-339. https://doi.org/10.1002/jcp.25423
  7. Batista R, Silva Ade J Jr, de Oliveira AB. 2009. Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 14: 3037-3072. https://doi.org/10.3390/molecules14083037
  8. Wang C, Zhang D, Ma H, Liu J. 2007. Neuroprotective effects of emodin-8-O-beta-D-g lucoside in vivo and in vitro. Eur. J. Pharmacol. 577: 58-63. https://doi.org/10.1016/j.ejphar.2007.08.033
  9. Wu Y, Jin F, Wang Y, Li F, Ren Z, Wang Y. 2017. In vitro and in vivo inhibitory effects of 6-hydroxyrubiadin on lipopolysaccharide-induced inflammation. Immunopharmacol. Immunotoxicol. 39: 107-116. https://doi.org/10.1080/08923973.2017.1295053
  10. Kim SH, Jang SD, Lee KY, Sung SH, Kim YC. 2009. Chemical constituents isolated from Polygala japonica leaves and their inhibitory effect on nitric oxide production in vitro. J. Enzyme Inhib. Med. Chem. 24: 230-233.
  11. Thomas R. 2001. A biosynthetic classification of fungal and streptomycete fused-ring aromatic polyketides. Chembiochem 2: 612-627. https://doi.org/10.1002/1439-7633(20010903)2:9<612::AID-CBIC612>3.0.CO;2-Z
  12. Ahn J, Lee J, Yang E, Lee Y, Koo K, Song K, et al. 2013. Mosquitocidal activity of anthraquinones isolated from symbiotic bacteria Photorhabdus of entomopathogenic nematode. J. Asia Pac. Entomol. 16: 317-320. https://doi.org/10.1016/j.aspen.2013.04.005
  13. Prasad KN. 2016. Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer's disease. Mech. Ageing Dev. 153: 41-47. https://doi.org/10.1016/j.mad.2016.01.002
  14. Sarrafchi A, Bahmani M, Shirzad H, Rafieian-Kopaei M. 2016. Oxidative stress and Parkinson's disease: new hopes in treatment with herbal antioxidants. Curr. Pharm. Des. 22: 238-246.
  15. Zhang QS, Heng Y, Yuan YH, Chen NH. 2017. Pathological alpha-synuclein exacerbates the progression of Parkinson's disease through microglial activation. Toxicol. Lett. 265: 30-37. https://doi.org/10.1016/j.toxlet.2016.11.002
  16. Choi DW. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623-634. https://doi.org/10.1016/0896-6273(88)90162-6
  17. Greenwood SM, Connolly CN. 2007. Dendritic and mitochondrial changes during glutamate excitotoxicity. Neuropharmacology 53: 891-898. https://doi.org/10.1016/j.neuropharm.2007.10.003
  18. Lorenzo HK, Susin SA. 2007. Therapeutic potential of AIFmediated caspase-independent programmed cell death. Drug Resist. Updat. 10: 235-255. https://doi.org/10.1016/j.drup.2007.11.001
  19. Maher P, Schubert D. 2000. Signaling by reactive oxygen species in the nervous system. Cell. Mol. Life Sci. 57: 1287-1305. https://doi.org/10.1007/PL00000766
  20. Tobaben S, Grohm J, Seiler A, Conrad M, Plesnila N, Culmsee C. 2011. Bid-mediated mitochondrial damage is a key mechanism in glutamate-induced oxidative stress and AIF-dependent cell death in immortalized HT-22 hippocampal neurons. Cell Death Differ. 18: 282-292. https://doi.org/10.1038/cdd.2010.92
  21. Lawson LJ, Perry VH, Dri P, Gordon S. 1990. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39: 151-170. https://doi.org/10.1016/0306-4522(90)90229-W
  22. Daneman R. 2012. The blood-brain barrier in health and disease. Ann. Neurol. 72: 648-672.
  23. Perry VH, Nicoll JA, Holmes C. 2010. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6: 193-201.
  24. Kingwell K. 2012. Neurodegenerative disease: microglia in early disease stages. Nat. Rev. Neurol. 8: 475.
  25. Schoenborn JR, Wilson CB. 2007. Regulation of interferon-$\gamma$ during innate and adaptive immune responses. Adv. Immunol. 96: 41-101.
  26. Possel H, Noack H, Putzke J, Wolf G, Sies H. 2000. Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 32: 51-59. https://doi.org/10.1002/1098-1136(200010)32:1<51::AID-GLIA50>3.0.CO;2-4
  27. Shuai K, Liu B. 2003. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3: 900-911.
  28. Coccia EM, Stellacci E, Marziali G, Weiss G, Battistini A. 2000. IFN-gamma and IL-4 differently regulate inducible NO synthase gene expression through IRF-1 modulation. Int. Immunol. 12: 977-985.
  29. Ohmori Y, Hamilton TA. 1995. The interferon-stimulated response e lement a nd a k appa B s ite mediate synerg istic induction of murine IP-10 gene transcription by IFN-gamma and TNF-alpha. J. Immunol. 154: 5235-5244.
  30. Brachmann AO, Joyce SA, Jenke-Kodama H, Schwar G, Clarke DJ, Bode HB. 2007. A type II polyketide synthase is responsible for anthraquinone biosynthesis in Photorhabdus luminescens. Chembiochem 8: 1721-1728. https://doi.org/10.1002/cbic.200700300
  31. Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P. 2002. Identification, characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Appl. Environ. Microbiol. 68: 3780-3789. https://doi.org/10.1128/AEM.68.8.3780-3789.2002
  32. Ciche TA, Blackburn M, Carney JR, Ensign JC. 2003. Photobactin: a catechol siderophore produced by Photorhabdus luminescens, an entomopathogen mutually associated with Heterorhabditis bacteriophora NC1 nematodes. Appl. Environ. Microbiol. 69: 4706-4713. https://doi.org/10.1128/AEM.69.8.4706-4713.2003
  33. Li J, Chen G, Wu H, Webster JM. 1995. Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl. Environ. Microbiol. 61: 4329-4333. https://doi.org/10.1128/AEM.61.12.4329-4333.1995
  34. Shi D, An R, Zhang W, Zhang G, Yu Z. 2017. Stilbene derivatives from Photorhabdus temperata SN259 and their antifungal activities against phytopathogenic fungi. J. Agric. Food Chem. 65: 60-65.
  35. Huang R, Wang T, Xie X-S, Ma K-X, Fang X-W, Wu S-H. 2016. Secondary metabolites from an endophytic fungus Nigrospora sp. Chem. Nat. Compd. 52: 697-699. https://doi.org/10.1007/s10600-016-1745-x
  36. Richardson W, Schmidt T, Nealson K. 1988. Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl. Environ. Microbiol. 54: 1602-1605.
  37. Wang LQ, Tang ZR, Mu WH, Kou JF, He DY. 2013. A new natural naphtho[1,2-b]furan from the leaves of Cassia fistula. J. Asian Nat. Prod. Res. 15: 1210-1213. https://doi.org/10.1080/10286020.2013.812077
  38. Lee H-S. 2011. Suppression effect of purpurin derivatives on nitric oxide synthase. J. Korean Soc. Appl. Biol. Chem. 54: 302-307.
  39. Sztaricskai F, Dinya Z, Batta G, Szallas E, Szentirmai A, Fodor A. 1992. Anthraquinones produced by enterobacters and nematodes. Acta Chim. Hung. 129: 697-707.

Cited by

  1. Natural Products from Cyanobacteria: Focus on Beneficial Activities vol.17, pp.6, 2019, https://doi.org/10.3390/md17060320