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THE DEGREE AND THE COPRIME-NESS FOR

MATRIX-VALUED RATIONAL FUNCTIONS

An-Hyun Kim and In Hyoun Kim

Abstract. In this note we give a relationship between the degree and

coprime-ness of matrix-valued rational functions.

1. Introduction

The aim of this note is to provide a relationship between the degree and
coprime-ness of matrix-valued rational functions. We first review a few essential
facts for (block) Toeplitz operators and (block) Hankel operators. Let L2 ≡
L2(T) be the set of square-integrable measurable functions on the unit circle
T ≡ ∂ D in the complex plane and H2 ≡ H2(T) be the corresponding Hardy
space. Let L∞ ≡ L∞(T) be the set of bounded measurable functions on T
and let H∞ ≡ H∞(T) := L∞ ∩ H2. For a Hilbert space E, let L2

E ≡ L2
E(T)

be the Hilbert space of E-valued norm square-integrable measurable functions
on T and H2

E ≡ H2
E(T) be the corresponding Hardy space. We observe that

L2
Cn = L2 ⊗ Cn and H2

Cn = H2 ⊗ Cn. Let Mn×m denote the set of n × m
complex matrices and write Mn := Mn×n. If Φ is a matrix-valued function in
L∞Mn

≡ L∞Mn
(T) (= L∞(T)⊗Mn), then the block Toeplitz operator TΦ and the

block Hankel operator HΦ on H2
Cn are defined by

TΦf = P (Φf) and HΦf = JP⊥(Φf) (f ∈ H2
Cn),

where P and P⊥ denote the orthogonal projections that map from L2
Cn onto

H2
Cn and

(
H2

Cn
)⊥

, respectively and J denotes the unitary operator from L2
Cn to

L2
Cn given by J(g)(z) = zIng(z) for g ∈ L2

Cn (In :=the n× n identity matrix).
If n = 1, TΦ and HΦ are called the (scalar) Toeplitz operator and the (scalar)
Hankel operator, respectively. For brevity we write I for the identity matrix
and

Iζ := ζI (ζ ∈ L∞).
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For Φ ∈ L∞Mn×m
, write

(1.1) Φ̃(z) := Φ∗(z).

A matrix function Θ ∈ H∞Mn×m
is called inner if Θ∗(z)Θ(z) = Im for almost all

z ∈ T. The following facts are clear from the definition:

T ∗Φ = TΦ∗ , H∗Φ = HΦ̃ (Φ ∈ L∞Mn
);(1.2)

TΦΨ − TΦTΨ = H∗Φ∗HΨ (Φ,Ψ ∈ L∞Mn
).(1.3)

For a matrix-valued function Φ ∈ H2
Mn×r

, we say that ∆ ∈ H2
Mn×m

is a left

inner divisor of Φ if ∆ is an inner matrix function such that Φ = ∆A for some
A ∈ H2

Mm×r
(m ≤ n). We also say that two matrix functions Φ ∈ H2

Mn×r
and

Ψ ∈ H2
Mn×m

are left coprime if the only common left inner divisor of both Φ

and Ψ is a unitary constant matrix and that Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mm×r

are

right coprime if Φ̃ and Ψ̃ are left coprime. Two matrix functions Φ and Ψ in
H2
Mn

are said to be coprime if they are both left and right coprime. We would

remark that if Φ ∈ H2
Mn

is such that det Φ is not identically zero, then any left

inner divisor ∆ of Φ is square, i.e., ∆ ∈ H2
Mn

. If Φ ∈ H2
Mn

is such that det Φ

is not identically zero, then we say that ∆ ∈ H2
Mn

is a right inner divisor of Φ

if ∆̃ is a left inner divisor of Φ̃ (cf. [6]).
Let λ ∈ D and write bλ := z−λ

1−λz , which is called a Blaschke factor. If M is

a closed subspace of Cn, then the matrix function of the form

eiζBλ,M := eiζ(BλPM + PM⊥)

(ζ ∈ R, Bλ := Ibλ and PX :=the orthogonal projection of Cn onto X ) is called
a Blaschke-Potapov factor. Also the function of the form

B := ν

n∏
k=1

Bλk,Mk
(ν is a unitary constant matrix)

is called a finite Blaschke-Potapov product. It is known [10] that Θ ∈ H∞Mn

is rational and inner if and only if it can be represented as a finite Blaschke-
Potapov product. On the other hand, it is also known [2, Lemma 3.1] that if
F ∈ H2

Mn
and M is a non-zero closed subspace of Cn, then

(1.4) F has Bλ,M as a right inner divisor ⇐⇒ M ⊆ kerF (λ)

and that if A,B ∈ H2
Mn

and B is a rational function such that detB is not
identically zero, then
(1.5)
A and B are right coprime ⇐⇒ kerA(α) ∩ kerB(α) = {0} for any α ∈ D.

For Φ ∈ L∞Mn
, write

(1.6) Φ+ := PnΦ ∈ H2
Mn

and Φ− :=
(
P⊥n Φ

)∗ ∈ H2
Mn

,
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where Pn denotes the orthogonal projection from L2
Mn

onto H2
Mn

. Thus we can

write Φ = Φ∗−+ Φ+ . Suppose Φ+ = [ϕij ] ∈ H2
Mn

is such that Φ∗ is of bounded
type (in other words, each entry is a quotient of two functions in H∞(T)).
Then it was ([1]) known that ϕij can be written of the form ϕij = θijbij , where
θij is an inner function, bij ∈ H2, and θij and bij are coprime. Thus if θ is the
least common multiple of θij ’s, then we can write

(1.7) Φ+ = [ϕij ] = [θijbij ] = [θaij ] = ΘA∗ (Θ = Iθ, A ∈ H2
Mn

).

Let Φ ≡ Φ∗− + Φ+ ∈ L∞Mn
be such that Φ and Φ∗ are of bounded type. Then

in view of (1.7) we can write

(1.8) Φ+ = Θ1A
∗ and Φ− = Θ2B

∗,

where Θi = Iθi with an inner function θi (i = 1, 2), A,B ∈ H2
Mn

. If Ω is the
greatest common left inner divisor of A and Θ in the representation (1.7):

Φ = ΘA∗ = A∗Θ (Θ ≡ Iθ for an inner function θ),

then Θ = ΩΩl and A = ΩAl for some inner matrix Ωl and some Al ∈ H2
Mn

.
Therefore if Φ∗ ∈ L∞Mn

is of bounded type, then we can write

(1.9) Φ = Al
∗Ωl, where Al and Ωl are left coprime:

in this case, A∗l Ωl is called the left coprime factorization of Φ and similarly, we
can write

(1.10) Φ = ΩrA
∗
r , where Ar and Ωr are right coprime:

in this case, ΩrA
∗
r is called the right coprime factorization of Φ (cf. [3], [4]).

On the other hand, it was known [7] that for Φ ∈ L∞Mn
, the following state-

ments are equivalent:

(i) Φ is of bounded type;
(ii) kerHΦ = ΘH2

Cn for some square inner matrix function Θ;
(iii) Φ = AΘ∗, where A ∈ H∞Mn

and A and Θ are right coprime.

2. Main results

For an inner matrix function Θ ∈ H2
Mn

, we write

H(Θ) := H2
Cn 	 ΘH2

Cn .

We begin with:

Definition 2.1. For Φ ∈ H∞Mn
, define the (analytic) degree of Φ by

deg (Φ) := rankHΦ∗ .

For Φ ∈ L∞Mn
, the analytic degree and co-analytic degree of Φ are defined by

deg+ (Φ) := rankHΦ∗ and deg− (Φ) := rankHΦ.
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Even though the degree of matrix-valued functions is defined for square
matrices, we may define the degree of any rectangular n × m matrix-valued
function by defining the Hankel operators with n×m matrix-valued symbols,
appropriately. However we concentrate on the square matrix cases for our
purpose on the Toeplitz and the Hankel operator theory because frequently
we want to deal with the commutators of two Hankel operators or the self-
commutators of Hankel operators. On the other hand, it is well known that
if Φ ∈ H∞Mn

is a matrix-valued rational function, then deg (Φ) is equal to the
McMillan degree of Φ (cf. [9, p. 81]).

Proposition 2.2. Suppose Φ ∈ H∞Mn
is such that Φ∗ is of bounded type, so

that we may write

Φ = Θ1A
∗ = B∗Θ2 (A,B ∈ H∞Mn

; the Θi are inner),

where Θ1 and A are right coprime and Θ2 and B are left coprime. Then

deg (Φ) = deg (det Θ1) = deg (det Θ2).

Proof. We first observe that if Θ is a square inner matrix function, then

(2.1) dimH(Θ) = deg (det Θ).

Indeed,

dimH(Θ) = dim kerTΘ∗ = −indexTΘ

= −indexTdet Θ
= dim kerT

det Θ

= dimH(det Θ) = deg (det Θ),

where the third equality follows from the Fredholm theory of block Toeplitz
operators (cf. [5]). We thus have

deg (Φ) = rankHΦ∗ = dim (kerH∗Φ∗)
⊥

= dim
(
kerHB̃Θ̃∗2

)⊥
= dim

(
Θ̃2H

2
Cn
)⊥

(since B̃ and Θ̃2 are right coprime)

= dimH(Θ̃2) = deg (det Θ̃2) (by (2.1)).

If Ψ = [ψij ] ∈ H∞Mn
, then Ψ̃ = [ψ̃ji] = [ψ̃ij ]

t, so that det Ψ̃ = det [ψ̃ij ] = d̃et Ψ.

Therefore deg (Φ) = deg (det Θ̃2) = deg (det Θ2) and similarly, deg (Φ̃) =

deg (det Θ1). Since deg (Φ) = rankHΦ∗ = rankH∗Φ∗ = rankHΦ̃∗ = deg (Φ̃),
the result follows at once. �

We here take a chance to compute the degree of a function Φ :=
(
z −bαz
0 z2

)
.

First of all we make a right coprime factorization of Φ:

Φ ≡
(
z −bαz
0 z2

)
=

(
bαz 0
0 z2

) (
bα 0
−1 1

)∗
.
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Indeed by (1.5) we can see that

Θ ≡
(
bαz 0
0 z2

)
and A ≡

(
bα 0
−1 1

)
are right coprime.

Thus by Proposition 2.2, deg Φ = deg (det Θ) = deg (bαz
3) = 4.

Theorem 2.3. If Θ ∈ H∞Mn
is an inner matrix function, then deg (det Θ) <∞

if and only if Θ is a finite Blaschke-Potapov product.

Proof. If Θ is a finite Blaschke-Potapov product of the form Θ=ν
∏m
j=1Bαj ,Mj

,

then det Θ =
∏m
j=1(bαj )

dimMj , so that deg (det Θ) =
∑m
j=1 dimMj < ∞.

Conversely, if deg (det Θ) = dimH(Θ) <∞, put Θ := [θij ]
n
ij=1. Since rankH∗

θij

≤ rankH∗Θ∗ = dimH(Θ̃) = dimH(Θ) < ∞, it follows from the Kronecker’s
lemma [8, p. 183] that θij ’s are rational functions. Thus Θ is a rational inner
matrix function and hence a finite Blaschke-Potapov product. �

Corollary 2.4. Every left (right) inner divisor of Bλ := Ibλ ∈ H∞Mn
is a

Blaschke-Potapov factor of the form eiζBλ,M with dimM ≤ n.

Proof. Let ∆1 be a left inner divisor of Bλ. Then we can write Bλ = ∆1∆2 for
some inner ∆2. Thus bnλ = det (Bλ) = det (∆1)det (∆2), and hence det (∆1) =
eiζbmλ (ζ ∈ R, m ≤ n). Thus by Theorem 2.3, ∆1 is a finite Blaschke Potapov
product and therefore ∆1 = eiζBλ,M (dimM = m), which gives the result. �

Theorem 2.5. Let Φ ∈ L∞Mn
be a matrix-valued rational function, so that we

may write
Φ = Θ∗1A (left coprime factorization)

= CΘ∗2 (right coprime factorization).

If Θ1 =ν
∏m
j=1Bαj ,Mj

(ν is a constant unitary matrix), then Θ2 =
∏m
j=1Bαj ,Nj

(up to right unitary constant matrix), where dimMj = dimNj for all j =
1, 2, . . . ,m. In particular,

det Θ1 = det Θ2 and detA = detC.

Proof. Observe that Φ∗ = A∗Θ1 = A∗ νBα1,M1

∏m
j=2Bαj ,Mj

. Write Ψ :=

(ν∗A)∗Bα1,M1
. Then ΨBα1,M⊥1

= (ν∗A)∗Ibα1
= Ibα1

(ν∗A)∗, so that Ψ =

Ibα1
(ν∗A)∗B∗

α1,M⊥1
. Thus if Ψ = ∆1C

∗
1 (∆1 and C1 are right coprime), then

∆1 is a left inner divisor of Ibα1
and

dimH(∆1) = deg− (Ψ̃∗) = deg− (Ψ∗) = deg
(
detBα1,M1

)
= dimM1.

It thus follows from Corollary 2.4 that ∆1 = eiζBα1,N1 , where dimN1 =
dimM1. An induction gives that dimNj = dimMj for j = 1, . . . ,m, so that

det Θ1 =

m∏
j=1

(bαj )
dimMj =

m∏
j=1

(bαj )
dimNj = det Θ2.

Moreover, detA = detB. This completes the proof. �
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Corollary 2.6. If Φ, Ψ ∈ H∞Mn
, then deg (ΦΨ) ≤ deg (Φ) + deg (Ψ).

Proof. If MΦ denotes the multiplication operator with symbol Φ, then a
straightforward calculation shows that JMΦJ = M∗

Φ̃
and HΦ = PJMΦ|H2

Cn
.

Using theses equalities we can show that HΦΨ = T ∗
Φ̃
HΨ +HΦTΨ. We thus have

deg (ΦΨ) = rankHΨ∗Φ∗ = rank (TΨ̃HΦ∗ +HΨ∗TΨ∗) ≤ rankHΦ∗ + rankHΨ∗ =
deg (Φ) + deg (Ψ). �

We need not expect that deg (Φ) = deg (det Φ) for Φ ∈ H∞Mn
. To see this,

let

Φ :=

(
z −bαz
0 1

)
.

Then det Φ = z, and hence deg (det Φ) = 1. On the other hand, by a straight-
forward calculation, we can see that Φ has the right coprime factorization such
as

Φ =

(
bαz 0
0 1

)(
bα 0
−1 1

)∗
(right coprime factorization).

Thus by Proposition 2.2, deg (Φ) = deg
(
det
(
bαz 0
0 1

))
= deg(bαz) = 2.

Theorem 2.7. Suppose Θ, A ∈ H∞Mn
with Θ a finite Blaschke-Potapov product.

Then the following statements are equivalent:

(i) det Θ and detA are coprime;
(ii) Aν and Θ are right coprime for each unitary constant matrix ν;
(iii) τA and Θ are left coprime for each unitary constant matrix τ .

Proof. (i)⇒(ii) and (i)⇒(iii): We first claim that if A,B ∈ H∞Mn
, then

(2.2) detA and detB are coprime =⇒ A and B are coprime.

For (2.2), we suppose A and B are not right coprime. Then A = A1∆ and
B = B1∆ for some inner matrix function ∆ which is not a unitary constant
matrix. Thus detA = detA1 det ∆ and detB = detB1 det ∆. But since ∆
is not a unitary constant matrix it follows that deg (det ∆) = dimH(∆) 6= 0,
which implies that det ∆ is not constant. Thus detA and detB are not coprime.
We thus have

(2.3) detA and detB are coprime =⇒ A and B are right coprime.

It then follows from (2.3) that if detA and detB are coprime, and hence det Ã

and det B̃ are coprime, then Ã and B̃ are right coprime, so that A and B are
left coprime. This together with (2.3) proves (2.2). Now since detAν = eiζdetA
and det τA = eiξdetA for some ζ, ξ ∈ R, the implications follow at once from
(2.2).

(ii)⇒(i): Let

Θ := ν

m∏
j=1

Bαj ,Mj
and mj := dimMj .
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Then det Θ = eiζ
∏m
j=1(bαj )

mj . If det Θ and detA are not coprime, then A(αj0)
is not invertible for some j0, 1 ≤ j0 ≤ m. Thus there exists a non-zero vector
x ∈ kerA(αj0). Since det Θ(αj0) = 0, it follows that Θ(αj0) is not invertible,
so that there exists a non-zero vector y ∈ ker Θ(αj0). If we choose a unitary
constant matrix ν0 such that ν0y = x, then y ∈ ker (Aν0)(αj0) ∩ ker Θ(αj0),
which by (1.6), implies that Aν0 and Θ are not right coprime.

(iii)⇒(ii): If τA and Θ are left coprime for each unitary constant matrix τ ,

then Ãτ̃ and Θ̃ are right coprime, so that by the equivalence of (i) and (ii),

d̃etA and d̃et Θ are coprime, and hence detA and det Θ are coprime, which
implies that Aν and Θ are right coprime. �

The converse of (2.2) is not true in general. For example, let

A :=
1√
2

(
1 −1
1 1

)(
bαz 0
0 1

)
and B :=

(
bα 0
−1 1

)
.

Then by (1.5), A and B are right coprime because kerA(α) ∩ kerB(α) = {0}
for all α ∈ D. Observe that

Ã :=
1√
2

(
bαz bαz
−1 1

)
and B̃ :=

(
bα −1
0 1

)
.

A similar argument shows that Ã and B̃ are right coprime and hence A and B
are left coprime. Therefore A and B are coprime. But evidently, detA ≡ bαz
and detB ≡ bα are not coprime.

Corollary 2.8. Let Φ ∈ H∞Mn
be a matrix-valued rational function, so that we

may write

Φ=Θ1A
∗=B∗Θ2 (A,B ∈ H∞Mn

; the Θi are finite Blaschke-Potapov product) .

Then we have:

(i) If det Θ1 and detA are coprime, then deg (Φ) = deg (det Θ1);
(ii) If det Θ2 and detB are coprime, then deg (Φ) = deg (det Θ2).

Proof. This follows from Proposition 2.2 and Theorem 2.7. �

The following corollary was well-known. Here we give a direct and simple
proof by using the coprime factorization.

Corollary 2.9. If ϕ ∈ H∞ is a rational function of the reduced form ϕ = q
p ,

(p and q are polynomials), then rankHϕ = max{deg q,deg p}.

Proof. Suppose n = deg p ≥ deg q = m. Without loss of generality, we may
write p(z) =

∏n
i=1(1 − αiz) (αi 6= 0). Since ϕ = q

p ∈ H∞, it follows that

0 < |αi| < 1 for all i. Write

ϕ(z) =
q(z)∏n

i=1(1− αiz)
=
( n∏
i=1

bαi

)
a (bαi :=

z − αi
1− αiz

),
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where a(z) =
∏n
i=1

znq(z)
1−αiz . We want to show that

n∏
i=1

bαi and a are coprime.

Note that
∏n
i=1 bαi and a are coprime if and only if (znq)(αi) 6= 0 for all

i = 1, 2, . . . , n. If q(z) is a constant, it is trivial. If instead q(z) is not constant,

then we can write q(z) = c
∏m
i=1(z − βi). Then znq(z) = zn−m · zmq(z) =

czn−m
∏m
i=1(1 − βiz) (1 ≤ m ≤ n). Thus if (znq)(αi) = 0, then βi = 1

αj

for some i, j, which implies that p(z) and q(z) have a common zero, a contra-
diction. This proves that

∏n
i=1 bαi and a are coprime. Therefore rankHϕ =

dimH (
∏n
i=1 bαi) = n = deg p.

If deg p < deg q, then we can write q = ph + r, where h is a polynomial
of degree n0 := m − n > 0. Then deg r ≤ deg q. Thus we have ϕ = h + r

p .

Observe that h(z) = zn0d(z) and r(z)
p(z) =

∏n
i=1 bαia, where αi 6= 0, d(0) 6= 0,

a(z) =
∏n
i=1

znr(z)
1−αiz , and a(αi) 6= 0 for all i = 1, 2, . . . , n. Hence,

ϕ(z) = zn0d(z) +

n∏
i=1

bαia = zn0

n∏
i=1

bαi

(
d(z)

n∏
i=1

bαi − zn0a(z)
)
,

where zn0
∏n
i=1 bαi and d(z)

∏n
i=1 bαi−zn0a(z) are coprime. We thus have that

degϕ = n0 + n = m = deg q. �

Corollary 2.10. Given a complex (possibly finite) sequence {αn} having no
limit point and a sequence {ni} of natural numbers satisfying

∑
ni ≤ r, there

exists a function ϕ ∈ H∞ such that

(i) ϕ has a zero of order ni at each αn;
(ii) rankHϕ = r.

Proof. If {αn} is an infinite sequence, let ϕ be the entire function appeared in
the Weierstrass Product Theorem: i.e., if we arrange 0 < |α1| ≤ |α2| ≤ · · · ,
then ϕ(z) :=

∏∞
n=1(1 − z

αn
)epn(z) with pn(z) := z

αn
+ 1

2 ( z
αn

)2 + · · · + 1
n ( z

αn
)n.

Then rankHϕ = degϕ = ∞. If {αn} is a finite sequence and r = ∞, let s be

a singular inner function and f(z) =
∏N
n=1(1 − z

αn
)ni . Putting ϕ = sf gives

the required function. If instead {αn} is a finite sequence and r < ∞, choose

α > max{1, |αn|}. Put p(z) = (z − α)r and q(z) =
∏N
n=1(1 − z

αn
)ni . Also

putting ϕ = q
p gives the required function. �
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