UPPERS TO ZERO IN POLYNOMIAL RINGS OVER GRADED DOMAINS AND UM-t-DOMAINS

Haleh Hamdi and Parviz Sahandi

Abstract. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, H be the set of nonzero homogeneous elements of R, and \star be a semistar operation on R. The purpose of this paper is to study the properties of quasi-Prüfer and UM-t-domains of graded integral domains. For this reason we study the graded analogue of \star-quasi-Prüfer domains called gr-\star-quasi-Prüfer domains. We study several ring-theoretic properties of gr-\star-quasi-Prüfer domains. As an application we give new characterizations of UM-t-domains. In particular it is shown that R is a gr-t-quasi-Prüfer domain if and only if R is a UM-t-domain if and only if R_P is a quasi-Prüfer domain for each homogeneous maximal t-ideal P of R. We also show that R is a UM-t-domain if and only if H is a t-splitting set in $R[X]$ if and only if each prime t-ideal Q in $R[X]$ such that $Q \cap H = \emptyset$ is a maximal t-ideal.

1. Introduction

Gilmer characterized Prüfer domains as integrally closed domains such that each prime ideal of the polynomial ring contained in an extended prime is extended [20, Theorem 19.15]. The later condition is called a quasi-Prüfer domain, see [6] and [16, Chapter 6]. Thus an integral domain D is a Prüfer domain if and only if D is integrally closed and quasi-Prüfer. As a t-operation analogue it is well-known that D is a Prüfer v-multiplication domain ($PvMD$) if and only if D is an integrally closed UM-t-domain [23, Proposition 3.2]. Recall that D is called a UM-t-domain [23], if every upper to zero in $D[X]$ is a maximal t-ideal and has been studied by several authors (see [8], [10], [12], [14] and [31]). In [9], Chang and Fontana unified quasi-Prüfer and UM-t-domains by introducing the notion of \star-quasi-Prüfer domain, where \star is a semistar operation on a domain. In this paper, we study quasi-Prüfer and UM-t-domain properties of graded integral domains. (Relevant definitions are reviewed in the sequel.)

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded (commutative) integral domain graded by an arbitrary torsionless grading monoid Γ. In [1], Anderson-Anderson defined the
graded analogue of some classical domains in *Multiplicative Ideal Theory* like a graded-Pr"{u}fer domain, graded GCD-domain and graded GGCD-domain. It is known that R is a graded-Pr"{u}fer domain (resp., graded GCD-domain, graded GGCD-domain) if and only if R is a Pr"{u}fer domain (resp., GCD-domain, GGCD-domain) [1, Theorem 6.4, Corollary 6.7 and Proposition 6.6]. In [5], Anderson and Chang had begun an investigation on graded integral domains including graded integral domains with a unit of nonzero degree. They defined R to be a graded-Pr"{u}fer domain if each nonzero finitely generated homogeneous ideal of R is invertible, and gave an example of a graded-Pr"{u}fer domain which is not Pr"{u}fer [5, Example 3.6]. Then the author in [32] gave some characterizations of graded-Pr"{u}fer domains.

For $a \in R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$, denote by $C(a)$ the ideal of R generated by homogeneous components of a. In [5] and [32], the authors used $C(a)$ to investigate properties of graded integral domains. Since there was not the role of an indeterminate, in most of the results, the base ring was required to have a unit of nonzero degree or to satisfy some other related condition (see [5, Section 1]). Because of this consideration, the author in [33], introduced a homogeneous content ideal for polynomial rings over graded domains to make use of the role of an indeterminate. For a polynomial $f = a_0 + a_1X + \cdots + a_nX^n \in R[X]$, define the homogeneous content ideal of f by $A_f := \bigoplus_{\alpha \in C} (a_\alpha)$. Using A_f we no longer need to assume that the base ring has a unit of nonzero degree.

The main purpose of this paper is to study the quasi-Pr"{u}fer and UM-domain properties of graded integral domains. For this reason in Section 2 we introduced the graded analogue of quasi-Pr"{u}fer domains called gr-quasi-Pr"{u}fer domains and make use of the homogeneous content ideal A_f. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then R is called a gr-quasi-Pr"{u}fer domain in case, if Q is a prime ideal in $R[X]$ and $Q \subseteq P[X]$ for some homogeneous quasi-prime ideal P of R, then $Q = (Q \cap R)[X]$. When $\ast = d$ the identity operation on R, then we call the gr-d-quasi-Pr"{u}fer domain a gr-quasi-Pr"{u}fer domain. It is shown that R is a gr-quasi-Pr"{u}fer domain if and only if each upper to zero in $R[X]$ contains a nonzero polynomial $g \in R[X]$ with $A_g = R^*$, if and only if for each upper to zero Q in $R[X]$, $A_Q^* = R^*$. It is also shown that R is a gr-quasi-Pr"{u}fer domain if and only if $\text{NA}(R, \ast)$ is a quasi-Pr"{u}fer domain if and only if every prime ideal of $\text{NA}(R, \ast)$ is extended from a homogeneous prime ideal of R. As an application, in Section 3, we give several new characterizations of UM-domains. In particular, we show that R is a UM-domain if and only if R_P is a quasi-Pr"{u}fer domain for each homogeneous prime t-ideal P of R if and only if R is a gr-t-quasi-Pr"{u}fer domain (see Theorem 3.2). Also we show that R is a UM-domain if and only if H (the multiplicative set of nonzero homogeneous elements of R) is a t-splitting set in $R[X]$ if and only if each prime t-ideal Q in $R[X]$ such that $Q \cap H = \emptyset$ is a maximal t-ideal (see Theorem 3.6). We also connect gr-quasi-Pr"{u}fer domains to UM-domains. More precisely, if \ast is a (semi)star operation on R, it is shown that R is a gr-\ast_f-quasi-Pr"{u}fer domain if and only if R is a UM-domain and
\(\tilde{\tau} \) and \(w \) coincide on nonzero homogeneous ideals of \(R \) (see Theorem 3.9). In particular \(R \) is a gr-quasi-Pr"ufer domain if and only if \(R \) is a UMT-domain and \(d \) and \(w \) coincide on nonzero homogeneous ideals of \(R \). Hence if \(R \) is a one dimensional graded domain, then \(R \) is a gr-quasi-Pr"ufer domain if and only if \(R \) is a quasi-Pr"ufer domain. Finally, we give an example of a gr-quasi-Pr"ufer domain that is not a quasi-Pr"ufer domain (see Example 3.14).

To facilitate the reading of the paper, we review some basic facts on semistar operations on (graded) integral domains. Let \(\Gamma \) be a nonzero torsionless grading monoid, that is, \(\Gamma \) is a commutative cancellative monoid (written additively), and \((\Gamma) = \{a - b \mid a, b \in \Gamma\} \) be the quotient group of \(\Gamma \); so \((\Gamma) \) is a torsionfree abelian group. It is known that a cancellative monoid is torsionless if and only if it can be given a total order compatible with the monoid operation [28, page 123]. Let \(R = \bigoplus_{a \in \Gamma} R_a \) be a \(\Gamma \)-graded integral domain. That is, \(\deg(x) = \alpha \) for each \(0 \neq x \in R_\alpha \) and \(\deg(0) = 0 \), and thus each nonzero \(f \in R \) can be written uniquely as \(f = x_{\alpha_1} + \cdots + x_{\alpha_n} \) with \(\deg(x_{\alpha_i}) = \alpha_i \) and \(\alpha_1 < \cdots < \alpha_n \). A nonzero \(x \in R_\alpha \) for all \(\alpha \in \Gamma \) is said to be homogeneous, and so if \(H = \bigcup_{\alpha \in \Gamma}(R_\alpha \setminus \{0\}) \), then \(H \) is the saturated multiplicative set of nonzero homogeneous elements of \(R \). Then \(R_H = \bigoplus_{a \in (\Gamma)}(R_{H\alpha})_a \), called the homogeneous quotient field of \(R \), is a \((\Gamma)\)-graded integral domain whose nonzero homogeneous elements are units. An integral ideal \(I \) of \(R \) is said to be homogeneous if \(I = \bigoplus_{a \in \Gamma}(I \cap R_\alpha) \). A fractional ideal \(I \) of \(R \) is homogeneous if \(sI \) is an integral homogeneous ideal of \(R \) for some \(s \in H \) (thus \(I \subseteq R_H \)). An overring \(T \) of \(R \), with \(R \subseteq T \subseteq R_H \) will be called a homogeneous overring if \(T = \bigoplus_{a \in (\Gamma)}(T \cap (R_{H\alpha}))_a \). Thus \(T \) is a \((\Gamma)\)-graded integral domain with \(T_\alpha = T \cap (R_{H\alpha})_a \) for all \(\alpha \in (\Gamma) \). For more on graded integral domains and their divisibility properties, see [2], [28].

Let \(D \) be an integral domain with quotient field \(K \). Let \(\mathcal{F}(D) \) denote the set of all nonzero \(D \)-submodules of \(K \), \(\mathcal{F}(\mathcal{D}) \) be the set of all nonzero fractional ideals of \(D \), and \(f(\mathcal{D}) \) be the set of all nonzero finitely generated fractional ideals of \(D \). Obviously, \(f(\mathcal{D}) \subseteq \mathcal{F}(\mathcal{D}) \subseteq \mathcal{F}(\mathcal{D}) \). As in [29], a semistar operation on \(D \) is a map \(\star : \mathcal{F}(\mathcal{D}) \rightarrow \mathcal{F}(\mathcal{D}), E \mapsto ^{\star}E^* \), such that, for all \(0 \neq x \in K \), and for all \(E, F \in \mathcal{F}(\mathcal{D}) \), the following properties hold: \((\star 1) \) \((xE)^* = x^{\star}E^*\); \((\star 2) \) \(E \subseteq F \) implies that \(^{\star}E^* \subseteq ^{\star}F^*\); \((\star 3) \) \(E \subseteq ^{\star}E^*\); and \((\star 4) \) \(^{\star}E^{\star} := (E^{\star})^* = E^* \).

A semistar operation \(\star \) is called a (semi)star operation on \(D \), if \(D^{\star} = D \). Let \(\star \) be a semistar operation on \(D \). For every \(E \in \mathcal{F}(\mathcal{D}) \), put \(^{\star}E = \bigcup E^* \), where the union is taken over all \(F \in f(D) \) with \(F \subseteq E \). It is easy to see that \(\star \) is a semistar operation on \(D \). If \(\star = \star_f \), then \(\star \) is said to be a semistar operation of finite type. We say that a nonzero ideal \(I \) of \(D \) is a quasi-\(\star \)-ideal of \(D \), if \(I^{\star} \cap D = \{1\} \); a quasi-\(\star \)-prime (ideal of \(D \)), if \(I \) is a prime quasi-\(\star \)-ideal of \(D \); and a quasi-\(\star \)-maximal (ideal of \(D \)), if \(I \) is maximal in the set of all proper quasi-\(\star \)-ideals of \(D \). Each quasi-\(\star \)-maximal ideal is a prime ideal. It was shown in [15, Lemma 4.20] that if \(D^{\star} \neq K \), then each proper quasi-\(\star_f \)-ideal of \(D \) is contained in a quasi-\(\star_f \)-maximal ideal of \(D \). We denote by \(\text{QMax}^\star(D) \) (resp.,
ideals to homogeneous ones. It is known that by \(h \) and that if \(\tilde{\star} \)

serving \([2, \text{Proposition 2.5}]\), and \(\tilde{\star} \) serving \([29, \text{page 6}]\).

Given a semistar operation \(\star \) on \(D \), it is possible to construct a semistar operation \(\star \), which is defined as follows, for each \(E \in \mathcal{F}(D) \), \(E^\star := \bigcap_{F \in \mathcal{QMax}^\star(D)} E D_F \).

The most widely studied (semi)star operations on \(D \) have been the identity \(d \), \(\tilde{d} \), and \(\tilde{\star} \) operations, where \(A^{-1} := (A^{-1})^{-1} \), with \(A^{-1} := (D : A) := \{ x \in K \mid x A \subseteq D \} \). We usually use these operations without subscripts. If \(\star \) is a (semi)star operation on \(D \), then \(d \leq \star \leq v \).

Let \(\star \) be a semistar operation on \(D \). Recall from \([17]\) that, \(D \) is called a \(\text{Pr"ufer} \ \star \text{-multiplication domain} \) (for short, a \(\text{P} \\star \text{MD} \)) if each nonzero finitely generated ideal of \(D \) is \(\star \text{-invertible} \); i.e., if \((I^{-1})^\gamma = D^\star \) for all \(I \in \mathcal{I}(D) \).

When \(\star = v \), we recover the classical notion of \(\text{P} \text{rMD} \); when \(\star = d_D \), the identity (semi)star operation, we recover the notion of \(\text{Pr"ufer} \) domain.

Let \(\star \) be a semistar operation on a graded integral domain \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \). We say that \(\star \) is homogeneous preserving if \(\star \) sends homogeneous fractional ideals to homogeneous ones. It is known that \(d \), \(t \), and \(v \) are homogeneous preserving \([2, \text{Proposition 2.5}]\), \(\tilde{\varnothing} \) is homogeneous preserving \([32, \text{Proposition 2.3}]\), and that if \(\star \) is homogeneous preserving, then so is \(\star f \) \([32, \text{Lemma 2.4}]\).

Denote by \(h\text{-QSpec}^\star(R) \) the homogeneous elements of \(\text{QSpec}^\star(R) \) and let \(h\text{-QMax}^\star(R) \) denote the set of ideals of \(R \) which are maximal in the set of all proper homogeneous quasi-\(\star \)-ideals of \(R \) (if \(\star \) is a (semi)star operation we denote these sets by \(h\text{-Spec}^\star(R) \) and \(h\text{-Max}^\star(R) \) respectively). It is shown that if \(R^\star \subseteq R_H \) and \(\star = \star f \) homogeneous preserving, then \(h\text{-QMax}^\star(R)(\subseteq h\text{-QSpec}^\star(R)) \) is nonempty, each proper homogeneous quasi-\(\star f \)-ideal is contained in a homogeneous maximal quasi-\(\star f \)-ideal \([32, \text{Lemma 2.1}]\), and \(h\text{-QMax}^{\star f}(R) = h\text{-QMax}^\star(R) \) \([32, \text{Proposition 2.5}]\).

2. Graded \(\star \text{-quasi-Pr"ufer domains} \)

Let \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \) be a graded integral domain with quotient field \(K \), \(H \) be the set of nonzero homogeneous elements of \(R \), \(X \) be an indeterminate over \(K \), and \(\star \) be a semistar operation on \(R \) such that \(R^\star \subseteq R_H \). The following is the key definition in this paper.

Definition 2.1. The graded integral domain \(R \) is called a gr-\(\star \)-quasi-Pr"ufer domain in case, if \(Q \) is a prime ideal in \(R[X] \) and \(Q \subseteq P[X] \) for some \(P \in h\text{-QSpec}^\star(R) \), then \(Q = (Q \cap R)[X] \). When \(\star = d \) the identity operation on \(R \), then we call the gr-\(d \)-quasi-Pr"ufer domain a gr-\(d \)-quasi-Pr"ufer domain.
It can be seen that if \(R \) has trivial grading \(\Gamma = \{0\} \), then a gr\(\ast\)-quasi-Prüfer domain is the same as a \(\ast\)-quasi-Prüfer domain [9]

It is clear from the definition that if \(R \) is a \(\ast\)-quasi-Prüfer domain, then it is a gr\(\ast\)-quasi-Prüfer domain. Assume that \(\ast_1 \leq \ast_2 \) are two semistar operations on \(R \). It is easy to see that if \(R \) is a gr\(\ast\)-\(\ast_1\)-quasi-Prüfer domain, then \(R \) is a gr\(\ast\)-\(\ast_2\)-quasi-Prüfer domain, since \(h\text{-}Q\text{Spec}^{\ast_2}(R) \subseteq h\text{-}Q\text{Spec}^{\ast_1}(R) \)

Assume that \(L \) is a fractional ideal of \(R[X] \) such that \(L \subseteq R_H[X] \), and set \(A_L := \sum_{f \in L} A_f \). It is easy to see that \(L \subseteq A_L[X] \). By an upper to zero in \(R[X] \), we mean a nonzero prime ideal \(Q \) of \(R[X] \) such that \(Q \cap R = 0 \).

Proposition 2.2. Let \(\ast \) be a semistar operation on a graded integral domain \(R = \bigoplus_{\alpha \in \Gamma} R_\alpha \). Then the following statements are equivalent:

1. \(R \) is a gr\(\ast\)-quasi-Prüfer domain.
2. Let \(Q \) be an upper to zero in \(R[X] \), then \(A_Q \not\subseteq P \) for each \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \).
3. Let \(Q \) be an upper to zero in \(R[X] \), then \(Q \not\subseteq P[X] \) for each \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \).
4. \(R_P \) is a quasi-Prüfer domain for each \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \).
5. \(R_{H \setminus P} \) is a gr\(\ast\)-quasi-Prüfer domain for each \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \).

Proof. (1) \(\Rightarrow \) (3). Follows from the definition.

(3) \(\Rightarrow \) (2). If \(Q \) is an upper to zero in \(R[X] \), then by assumption \(Q \not\subseteq P[X] \) for all \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \). Hence \(A_Q \not\subseteq P \) for each \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \), since \(Q \subseteq A_Q[X] \).

(2) \(\Rightarrow \) (1). Assume that \(Q \) is a prime ideal in \(R[X] \) such that \((Q \cap R)[X] \subseteq Q \subseteq P[X] \) for some \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \). Then we can find an upper to zero \(Q_1 \) in \(R[X] \) such that \(Q_1 \subseteq Q \) by [11, Theorem A]. Thus \(A_{Q_1} \subseteq A_Q \subseteq P \) for some \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \), and this contradicts the hypothesis.

(1) \(\Rightarrow \) (4). Let \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \). If \(Q \) is a prime ideal of \(R_P[X] \) with \(c_{R_P}(Q) \subseteq R_P \), then \(c_{R_P}(Q) \subseteq PR_P \), and hence \(Q \subseteq PR_P[X] \) (where \(c_D(f) \) is the fractional ideal of an integral domain \(D \) generated by the coefficients of \(f \in D[X] \) and \(c_D(Q) = \sum_{f \in Q} c_D(f) \) for \(Q \) an ideal of \(D[X] \)). So \(Q \cap R[X] \subseteq P[X] \), and by (1) we have \(Q \cap R[X] = (Q \cap R)[X] \). Hence \(Q = (Q \cap R_P)[X] \).

Thus \(R_P \) is a quasi-Prüfer domain by [9, Theorem 1.1].

(4) \(\Rightarrow \) (1) is the same as the proof of part (iv)\(\Rightarrow\)(i) of [9, Lemma 2.1].

(1) \(\Rightarrow \) (5). Let \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \). Assume that \(Q \) is a prime ideal of \(R_{H \setminus P}[X] \) and \(Q \subseteq qR_{H \setminus P}[X] \) for some \(qR_{H \setminus P} \in h\text{-}\text{Spec}(R_{H \setminus P}) \). Hence \(Q \cap R[X] \subseteq qR_{H \setminus P}[X] \cap R[X] \subseteq P[X] \). Thus \(Q \cap R[X] = (Q \cap R)[X] \) by (1). Therefore \(Q = (Q \cap R_{H \setminus P})[X] \) and \(R_{H \setminus P} \) is a gr\(\ast\)-quasi-Prüfer domain.

(5) \(\Rightarrow \) (1). Assume that \(Q \) is a prime ideal in \(R[X] \) and \(Q \subseteq P[X] \) for some \(P \in h\text{-}Q\text{Spec}^{\ast}(R) \). Thus \(Q_{H \setminus P} \subseteq PR_{H \setminus P}[X] \). Hence by (5) one has \(Q_{H \setminus P} = (Q_{H \setminus P} \cap R_{H \setminus P})[X] \). Consequently \(Q = (Q \cap R)[X] \) and \(R \) is a gr\(\ast\)-quasi-Prüfer domain.

\(\square\)
Recall from [32], that R is called a graded Prüfer \ast-multiplication domain (GP$_\ast$MD) if every nonzero finitely generated homogeneous ideal of R is a \ast-invertible. When $\ast = v$ we have the notion of a graded-PcMD(=PcMD) [1]. Also when $\ast = d$, a GPdMD is a graded-Prüfer domain [5].

Corollary 2.3. Every GP$_\ast$MD is a gr-\ast-quasi-Prüfer domain.

Proof. Assume that R is a GP$_\ast$MD. Then for $P \in h$-QSpec(\tilde{R}), we have R_P is a valuation domain by [32, Theorem 4.4], and hence R_P is a quasi-Prüfer domain. So that by Proposition 2.2, R is a gr-\ast-quasi-Prüfer domain. Since $\tilde{\ast} \leq \ast$ we have R is a gr-\ast-quasi-Prüfer domain. □

Corollary 2.4. Let \ast be a homogeneous preserving semistar operation on a graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ such that $R^\ast \subseteq R_H$. Then R is a gr-\ast-f-quasi-Prüfer domain if and only if R is a gr-\ast-$\tilde{\ast}$-quasi-Prüfer domain.

Proof. Use Proposition 2.2, together with the equality h-QMax$_{\ast}^{\ast} (R) = h$-QMax$_{\ast}^{\ast} (R)$ of [32, Proposition 2.5]. □

Note that the t-operation is a homogeneous preserving star operation and that $w = \tilde{t}$. Thus in particular R is a gr-t-quasi-Prüfer domain if and only if R is a gr-w-quasi-Prüfer domain. It is shown [9, Corollary 2.4] that D is a t-quasi-Prüfer domain if and only if D is a UMt-domain. In Theorem 3.2 we will show that R is a gr-t-quasi-Prüfer domain if and only if R is a UMt-domain. Recently Chang defined another notion of graded UMt-domains for graded integral domains R such that R_H is UFD [7]. A graded integral domain R with R_H a UFD is called a graded UMt-domain if every upper to zero in R is a maximal t-ideal, in the sense that a prime ideal U in R is called an upper to zero in R, if there exists a prime element $f \in R_H$ such that $U = fR_H \cap R$. It is shown in [7, Theorem 3.5] that, if in addition R has a unit of nonzero degree, then R is a UMt-domain if and only if R is a graded UMt-domain.

Assume that \ast is a homogeneous preserving semistar operation on R such that $R^\ast \subseteq R_H$. Then using [32, Lemma 2.1], one has h-QMax$_{\ast}^{\ast} (R) \neq \emptyset$ and if I is a homogeneous ideal of R, then $I^\ast \ast = R^\ast$ if and only if $I \nsubseteq P$ for all $P \in h$-QMax$_{\ast}^{\ast} (R)$.

Lemma 2.5. Let \ast be a homogeneous preserving semistar operation on a graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ such that $R^\ast \subseteq R_H$. Then the following statements are equivalent:

1. R is a gr-\ast-f-quasi-Prüfer domain.
2. Each upper to zero in $R[X]$ contains a nonzero polynomial $g \in R[X]$ with $A_g^\ast = R^\ast$.
3. If Q is an upper to zero in $R[X]$, then $A_Q^\ast = R^\ast$.

Proof. (1) \Leftrightarrow (3). Follows from Proposition 2.2, because the property $A_Q \nsubseteq P$ for all $P \in h$-QMax$_{\ast}^{\ast} (R)$ is equivalent to $A_Q^\ast = R^\ast$.

(3) \Rightarrow (2) is obvious.
(2) ⇒ (1) is the same as the proof of part (2⋆) ⇒ (1⋆) of [9, Lemma 2.3]. □

We say that $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ is a graded valuation domain (gr-valuation domain) if either $u \in R$ or $u^{-1} \in R$ for every nonzero homogeneous $u \in R_H$. It is known that a gr-valuation domain R has a unique homogeneous maximal ideal M, and in this case, R_M is a valuation domain [32, Lemma 4.3]. It is clear that R is a gr-valuation domain if and only if R is a graded-Prüfer domain with a unique homogeneous maximal ideal. In particular a gr-valuation domain is integrally closed.

The following proposition is the graded version of the celebrated result of Krull [20, Theorem 19.8]. The integral closure of R is denoted by \bar{R}.

Proposition 2.6 (cf. [25, Theorem 2.10]). Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then the integral closure of R in K is the intersection of the family $\{V_\lambda\}_{\lambda \in \Lambda}$ of gr-valuation overrings of R. In particular, \bar{R} is a homogeneous overring of R.

Let R be a graded integral domain and \star a semistar operation on R. By Proposition 2.6, \bar{R} is a homogeneous overring of R. Note that \bar{R} may not be a fractional ideal of R. However the same proof of [32, Proposition 2.3] shows that \star sends nonzero homogeneous R-submodules of R_H to homogeneous ones. Therefore $\bar{R} := (\bar{R})^\star$ is a homogeneous overring of R.

For a fractional ideal I of R let I_h denote the fractional ideal of R generated by the set of homogeneous elements of R in I.

Lemma 2.7. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain and T a homogeneous overring of R. If J is an ideal of T, then $(J \cap R)_h = J_h \cap R$.

Proof. The inclusion $(J \cap R)_h \subseteq J_h \cap R$ is clear. Let $x = \sum x_i \in J_h \cap R$ where x_i are homogeneous components of x. Then $x_i \in J_h \cap R \subseteq J \cap R$. Therefore $x = \sum x_i \in (J \cap R)_h$. □

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain, and T be a homogeneous overring of R. Let \star and \star' be semistar operations on R and T, respectively. Recall from [32] that T is called a homogeneously (\star, \star')-linked overring of R if

$$F^* = R^* \Rightarrow (FT)^{\star'} = T^{\star'}$$

for each nonzero homogeneous finitely generated ideal F of R.

Let $N(\star) := \{ f \in R[X] \mid f \neq 0 \text{ and } A^*_f = R^* \}$ and set $\text{NA}(R, \star) := R[X]_{N(\star)}$ and $\text{NA}(R) := \text{NA}(R, d)$. Then it is shown in [33], that $\text{NA}(R, \star)$ is compatible with the graded structure of the base ring R and that if R has the trivial grading, then $\text{NA}(R, \star) = \text{Na}(R, \star)$ the usual \star-Nagata ring [18]. It is known that $N(\star) = N(\star_f) = N(\tilde{\star}) = R[X] \setminus \bigcup \{ P[X] \mid P \in h\text{-QMax}^\tilde{\star}(R) \}$ and $\text{Max}(\text{NA}(R, \star)) = \{ P \text{NA}(R, \star) \mid P \in h\text{-QMax}^\tilde{\star}(R) \}$ [33, Proposition 2.3].
Proposition 2.8 ([33, Theorem 3.6]). Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded integral domain, and \star be a semistar operation on R such that $R^\star \subseteq R_H$. Then, the following statements are equivalent:

1. R is a GP\starMD.
2. Every ideal of $NA(R, \star)$ is extended from a homogeneous ideal of R.
3. $NA(R, \star)$ is a Prüfer domain.

In particular if R is a GP\starMD, then $R^\widehat{\star}$ is integrally closed.

We are now ready to state and prove the main result of this section which gives some characterizations of gr-\star_f-quasi-Prüfer domains.

Theorem 2.9. Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded integral domain, and \star be a homogeneous preserving semistar operation on R such that $R^\star \subseteq R_H$. Then, the following statements are equivalent:

1. R is a gr-\star_f-quasi-Prüfer domain.
2. Set $\tilde{R} = (\tilde{R})^\widehat{\star}$ and let $\iota : R \hookrightarrow \tilde{R}$ be the canonical embedding, then \tilde{R} is a GP$\tilde{(}\tilde{\star})$ MD.
3. Each homogeneous overring T of R is a gr-(\star_f)-quasi-Prüfer domain, where $\iota : R \hookrightarrow T$ is the canonical embedding.
4. Each homogeneously (\star, \star')-linked overring T of R is a gr-\star_f'-quasi-Prüfer domain.
5. Every prime ideal of $NA(R, \star)$ is extended from a homogeneous prime ideal of R.
6. $NA(R, \star_f)$ is a quasi-Prüfer domain.
7. The integral closure of $NA(R, \star_f)$ is a Prüfer domain.
8. R_P is a quasi-Prüfer domain, for each $P \in h$-$QMax^{\star_f}(R)$ (or, for each $P \in h$-$QSpec^{\star_f}(R)$).

Proof. (6) \Rightarrow (8). Let $P \in h$-$QMax^{\star_f}(R)$ (or $P \in h$-$QSpec^{\star_f}(R)$). Then $PNA(R, \star)$ is a maximal ideal of $NA(R, \star)$ [33, Proposition 2.3]. Since $R_P(X) = R_P[X]_{PNA(R, \star)}$ and $NA(R, \star)$ is a quasi-Prüfer domain, then $R_P(X)$ is a quasi-Prüfer domain by [9, Theorem 1.1 (1) \Leftrightarrow (11)]. Then [9, Theorem 1.1 (1) \Leftrightarrow (9)] implies that R_P is a quasi-Prüfer domain.

(8) \Rightarrow (6). Let $Q \in \text{Max}(NA(R, \star))$. Then there exists a $P \in h$-$QMax^{\star_f}(R)$ such that $Q = PNA(R, \star)$ and $NA(R, \star)Q = R_P(X)$ [33, Proposition 2.3]. Thus using [9, Theorem 1.1], one has $NA(R, \star_f)$ is a quasi-Prüfer domain.

(1) \Leftrightarrow (8) is Proposition 2.2.

(6) \Rightarrow (2). Assume that $NA(R, \star_f)(= NA(R, \tilde{\star}))$ is a quasi-Prüfer domain and thus the integral closure $\overline{NA(R, \star)}$ is a Prüfer domain by [9, Theorem 1.1]. Note that $\overline{NA(R, \star)} = \overline{R[X]}_{\overline{N(\tilde{\star})}}$, where $N(\tilde{\star}) = N(\star_f) = \{ y \in R[X] \mid A_y^{\star_f} = R^\star \}$. Set $\star := (\tilde{\star})$. Clearly \star is a (semi)star operation of finite type on \tilde{R}. Moreover $NA(R, \star) = \overline{R[X]}_{\overline{N}}$, where $\overline{N} = \{ h \in \tilde{R}[X] \mid (A_h^\star)^{\star_f} = \tilde{R}^\star \}$. Then \overline{N} is a multiplicatively closed subset of $\tilde{R}[X]$ and it is easy to see that $N(\tilde{\star}) \subseteq \overline{N}$ (indeed if $f \in N(\tilde{\star})$, then $A_f^{\star_f} \subseteq R^\star$ and so $(A_f^\star)^{\star_f} = (A_f \overline{R})^\star = \tilde{R}$). Hence
\(\overline{\text{NA}(R, \pi)} \subseteq \text{NA}(\tilde{R}, \ast) \) and so \(\text{NA}(\tilde{R}, \ast) \) is a Prüfer domain by [20, Theorem 26.1]. Therefore \(\tilde{R} \) is a GP*MD by Proposition 2.8.

(2) \(\Rightarrow \) (7). With the notation used in part (6) \(\Rightarrow \) (2), since \(\tilde{R} \) is a GP*MD, we have \(\text{NA}(\tilde{R}, \ast) \) is a Prüfer domain by Proposition 2.8. The conclusion will trivially follows if we show that \(\overline{\text{NA}(R, \pi)} = \text{NA}(\tilde{R}, \ast) \), i.e., \(\tilde{R}[X]_{N(\pi)} = \tilde{R}[X]_{\tilde{N}} \).

Note that \(N(\tilde{R}) = R[X] \setminus \{ P[X] \mid P \in h\text{-QMax}^{\tilde{2}}(R) \} \), \(\tilde{N} = \tilde{R}[X] \setminus \{ Q[X] \mid Q \in h\text{-Max}^{\tilde{2}}(\tilde{R}) \} \) and \(\tilde{R}[X]_{N(\pi)} \subseteq \tilde{R}[X]_{\tilde{N}} \). By [9, Lemma 2.15(b)], the natural embedding \(\iota : R \hookrightarrow \tilde{R} \) verifies \(\tilde{\pi}\text{-INC} \) and \(\tilde{\pi}\text{-GU} \).

Let \(Q \) be a prime ideal of \(\tilde{R} \). We show that \(Q \in h\text{-Max}^{\tilde{2}}(\tilde{R}) \) if and only if \(Q \cap R \in h\text{-QMax}^{\tilde{2}}(R) \). First we show that if \(P = Q \cap R \) is a quasi-\(\tilde{\pi} \)-prime ideal of \(R \), then \(Q \) is a \(\ast \)-prime ideal of \(\tilde{R} \). Since \(Q \in \mathcal{F}(\tilde{R}) \subseteq \mathcal{F}(R) \), we have \(Q^{\ast} = Q^{(2)} \ast = \bigcap_{P \in \text{QSpec}^{\ast}(R)} QRP \). Assume that \(P = Q \cap R \) is a quasi-\(\tilde{\pi} \)-prime ideal of \(R \) and \(x \in Q^{\ast} \). Then \(x \in QRP \). So there exist \(a \in Q \) and \(b \in R \setminus P \) such that \(x = a/b \). Therefore \(xb = a \in Q \) implies that \(x \in Q \), since \(Q \) is a prime ideal of \(\tilde{R} \) and \(b \in \tilde{R} \setminus P \) and \(x \in Q^{\ast} \subseteq (\tilde{R})^{\ast} = \tilde{R} \). Therefore \(Q^{\ast} \subseteq Q \) and so \(Q \) is a \(\ast \)-prime ideal of \(\tilde{R} \). Now assume that \(P := Q \cap R \in h\text{-QMax}^{\tilde{2}}(R) \). Note that \(P = \tilde{P}_h = (Q \cap R)_h = Q_h \cap R \) by Lemma 2.7, and \(Q_h \) is a homogeneous \(\ast \)-prime ideal by [32, Page 186]. If \(Q_h \subseteq Q \), then by \(\tilde{\pi}\text{-INC} \) we have \(Q_h \cap R \subseteq Q \cap R \), that is \(P \subseteq P \) which is a contradiction. Therefore \(Q \) is a homogeneous \(\ast \)-prime ideal of \(\tilde{R} \). Let \(M \in h\text{-Max}^{\tilde{2}}(\tilde{R}) \) such that \(Q \subseteq M \). By \(\tilde{\pi}\text{-INC} \) we have \(P = Q \cap R \subseteq M \cap R \). Therefore \(M \cap R \subseteq (M \cap R)^{\ast} \cap R = (M^{\ast} \cap R^{2}) \cap R \subseteq (M^{\ast} \cap \tilde{R}) \cap R = (M^{\ast} \cap \tilde{R}) \cap R = M \cap R \), which is a contradiction since \(P \in h\text{-QMax}^{\tilde{2}}(R) \).

Conversely, assume that \(Q \in h\text{-Max}^{\tilde{2}}(\tilde{R}) \) and that \(P := Q \cap R \subseteq P' \) for some \(P' \in h\text{-QMax}^{\tilde{2}}(R) \). By \(\tilde{\pi}\text{-GU} \), there exists a \(\ast \)-prime ideal \(Q' \) of \(\tilde{R} \) such that \(Q' \cap R = P' \) and \(Q \subseteq Q' \). Note that using Lemma 2.7 and \(\tilde{\pi}\text{-INC} \), we can assume that \(Q' \) is a homogeneous prime ideal, and this is a contradiction.

From the fact that \(Q \in h\text{-Max}^{\tilde{2}}(\tilde{R}) \) if and only if \(Q \cap D \in h\text{-QMax}^{\tilde{2}}(R) \), it can be seen that the ideals of \(\tilde{R}[X] \) that are maximal with respect to the property of being disjoint from \(N(\tilde{R}) \) are the ideals \(\{ (Q \cap \tilde{R})[X] \mid Q \in h\text{-Max}^{\tilde{2}}(\tilde{R}) \} \). From this, [20, Proposition 4.8 and Theorem 4.10] and [30, Proposition 1.5], it follows easily that \(\tilde{R}[X]_{N(\tilde{R})} = \tilde{R}[X]_{\tilde{N}} \).

(7) \(\Rightarrow \) (6) is true by [9, Theorem 1.1].

(1) \(\Rightarrow \) (4). Assume that \(T \) is a homogeneously \((\ast, \ast^{\prime}) \)-linked overring of \(R \). Thus \(\text{NA}(T, \ast^{\prime}) \) is an overring of \(\text{NA}(R, \ast) \) by [33, Lemma 2.8]. Since we already proved that (1) is equivalent to (7), we have \(\text{NA}(R, \ast) \) has Prüfer integral closure. Hence \(\text{NA}(T, \ast^{\prime}) \) also has Prüfer integral closure. Therefore \(T \) is a gr-\(\ast^{\prime} \)-quasi-Prüfer domain.

(4) \(\Rightarrow \) (3). Assume that \(T \) is a homogeneous overring of \(R \). Then it can be seen that \(T \) is homogeneously \((\ast_{f}, (\ast_{f})_{\ast}) \)-linked overring of \(R \). Hence \(T \) is a gr-(\(\ast_{f} \))-quasi-Prüfer domain.
(3) \Rightarrow (1) is trivial.

(1) \Rightarrow (5). Let $\Omega = Q \text{NA}(R, *) = QR[X]_{N(*)}$ be a prime ideal of $\text{NA}(R, *)$ for some prime ideal Q of $R[X]$ such that $Q \cap N(*) = \emptyset$. In part (2) \Rightarrow (7), we showed that $\text{NA}(R, *) = \text{NA}(\tilde{R}, *)$. So there exists a prime ideal L of $\text{NA}(\tilde{R}, *)$ such that $L \cap \text{NA}(R, *) = QR[X]_{N(*)}$. Note that we proved (1) \iff (2), hence \tilde{R} is a GP*MD. Thus by Proposition 2.8, there exists a homogeneous prime ideal L of \tilde{R} such that $L = L \text{NA}(\tilde{R}, *)$. Whence $L \text{NA}(\tilde{R}, *) \cap \text{NA}(R, *) = QR[X]_{N(*)}$ and intersecting with $R[X]$ one obtains that $Q = (L \cap R)[X]$. Note that $L \cap R$ is a homogeneous prime ideal of R such that $\Omega = (L \cap R) \text{NA}(R, *)$.

(5) \Rightarrow (1). Suppose that R is not a gr-$*f$-quasi-Prüfer domain. Then by Lemma 2.5, there is an upper to zero Q in $R[X]$ such that $Q \cap N(*) = \emptyset$. Hence $Q \text{NA}(R, *) = QR[X]_{N(*)}$ is a proper prime ideal of $\text{NA}(R, *)$. Note that $Q \text{NA}(R, *) \neq P \text{NA}(R, *)$ for all nonzero homogeneous prime ideals P of R, since Q is an upper to zero in $R[X]$. This fact contradicts the assumption (5).

The following corollary is immediate from Theorem 2.9, Proposition 2.2 and Lemma 2.5.

Corollary 2.10. Let $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ be a graded integral domain. Then the following statements are equivalent:

1. R is a gr-quasi-Prüfer domain.
2. R is a graded-Prüfer domain.
3. Each homogeneous overring T of R is a gr-quasi-Prüfer domain.
4. Every prime ideal of $\text{NA}(R)$ is extended from a homogeneous prime ideal of R.
5. $\text{NA}(R)$ is a quasi-Prüfer domain.
6. The integral closure of $\text{NA}(R)$ is a Prüfer domain.
7. R_P is a quasi-Prüfer domain, for each $P \in h\text{-Max}(R)$ (or, for each $P \in h\text{-Spec}(R)$).
8. $R_{P \setminus P}$ is a gr-quasi-Prüfer domain, for each $P \in h\text{-Max}(R)$ (or, for each $P \in h\text{-Spec}(R)$).
9. Each upper to zero in $R[X]$ contains a nonzero polynomial $g \in R[X]$ with $A_g = R$.
10. If Q is an upper to zero in $R[X]$, then $A_Q = R$.

Remark 2.11. Let $*$ be a semistar operation on a graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ such that $R^* \subsetneq R_H$. Note that by [32, Proposition 2.3], R° is a homogeneous overring of R and let $\iota : R \hookrightarrow R^\circ$. Then exactly by the same way as the proof of [18, Corollary 3.5], one can show that $h\text{-QMax}(R^\circ) = \{QR_Q \cap R^\circ | Q \in h\text{-QMax}^\circ(R)\}$, and hence $\text{NA}(R, *) = \text{NA}(R^\circ, \iota_*)$.

Proposition 2.12. Let $*$ be a semistar operation on a graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_\alpha$ such that $R^* \subsetneq R_H$. Then the following statements are equivalent:
(1) R is a GP⋆MD.
(2) R is a gr-⋆f-quasi-Prüfer domain and R_Q is integrally closed for all $Q \in h\text{-}Q\text{Max}^+(R)$.
(3) R is a gr-⋆f-quasi-Prüfer domain and R^* is integrally closed.

Proof. (1) \Rightarrow (3) holds by Corollary 2.3 and Proposition 2.8.
(3) \Rightarrow (1). Note that $\text{NA}(R,⋆) = \text{NA}(R^*,(⋆))$ by Remark 2.11. On the other hand $\text{NA}(R^*,(⋆))$ is integrally closed since R^* is integrally closed and $\text{NA}(R,⋆)$ is a quasi-Prüfer domain by Theorem 2.9. Thus $\text{NA}(R,⋆)$ is a Prüfer domain and hence R is a GP⋆MD by Proposition 2.8.
(1) \iff (2) holds by [13, Proposition 3.8] and Corollary 2.3. □

3. Graded integral UMt-domains

Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain and H be the set of nonzero homogeneous elements of R. In this section we give several new characterizations of UMt-domains. In particular we show that R is a UMt-domain if and only if R is a gr-t-quasi-Prüfer domain. We also connect the gr-⋆f-quasi-Prüfer domains to UMt-domains for (semi)star operation $⋆$ on R.

Let D be an integral domain. Then D is a trivially graded domain with $\Gamma = \{0\}$, and each nonzero element of D is homogeneous, i.e., $H = D \setminus \{0\}$. Hence in this case, a prime ideal Q of $D[X]$ is an upper to zero if and only if $Q \cap H = \emptyset$. Also note that each upper to zero in $D[X]$ is a prime t-ideal.

The following proposition is a useful graded version of the well-known result of Houston and Zafrullah [23, Theorem 1.4] (see also [19, Theorem 3.3]). Recall from [22, Proposition 4.3] that $(I[X])^t = I'[X]$ for each fractional ideal I of R.

Proposition 3.1. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain and Q be a prime t-ideal in $R[X]$ such that $Q \cap H = \emptyset$. Consider the following statements.

1. $(A_Q)^t \neq R$.
2. Q is a maximal t-ideal.
3. Q is t-invertible.

Then (1) \iff (2) \iff (3) and, if Q is an upper to zero, then (2) \Rightarrow (3).

Proof. (1) \Rightarrow (2). Suppose that Q is not a maximal t-ideal, and let M be a maximal t-ideal of $R[X]$ which contains Q. Since the containment is proper, we have that $M \cap R \neq 0$. Then by [23, Proposition 1.1], $M = (M \cap R)[X]$ and $M \cap R$ is a t-ideal of R. Since $Q \subseteq M$, A_Q is contained in the t-ideal $M \cap R$, so that $(A_Q)^t \neq R$.

(2) \Rightarrow (1). Since $Q \cap H = \emptyset$ and A_Q is homogeneous, one has $Q \subseteq A_Q[X]$. Then $(A_Q)^t = R$ using [22, Proposition 4.3].

(3) \Rightarrow (2) is true by [23, Proposition 1.3].

Now assume that Q is an upper to zero in $R[X]$. Then (2) \Rightarrow (3) is true by [23, Theorem 1.4]. □
In the following result which is the first main result of this section, we show that R is a gr-t-quasi-Prüfer domain if and only if R is a UMT-domain if and only if R_P is a quasi-Prüfer domain, for each homogeneous prime (or maximal) t-ideal P of $R,$ which are new characterizations of UMT-domains.

Theorem 3.2. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then the following statements are equivalent:

1. R is a gr-t-quasi-Prüfer domain.
2. Let Q be an upper to zero in $R[X],$ then $A_Q \nsubseteq P$ for each $P \in h$-$\text{Spec}^t(R)$.
3. Let Q be an upper to zero in $R[X],$ then $Q \nsubseteq P[X]$ for each $P \in h$-$\text{Spec}^t(R)$.
4. R_P is a quasi-Prüfer domain for each $P \in h$-$\text{Spec}^t(R)$.
5. $R_{H \setminus P}$ is a gr-quasi-Prüfer domain for each $P \in h$-$\text{Spec}^t(R)$.
6. Each upper to zero in $R[X]$ contains a nonzero polynomial $g \in R[X]$ with $(A_g)^t = R$.
7. If Q is an upper to zero in $R[X],$ then $(A_Q)^t = R$.
8. Each upper to zero in $R[X]$ is a t-invertible.
9. Each upper to zero in $R[X]$ is a maximal t-ideal.
10. R is a UMT-domain.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) follows from Proposition 2.2.

(1) \Leftrightarrow (6) \Leftrightarrow (7) follows from Lemma 2.5.

(7) \Leftrightarrow (8) \Leftrightarrow (9) follows from Proposition 3.1.

(9) \Leftrightarrow (10) is the definition of UMT-domains [23].

Note that a consequence of Proposition 2.12 is that R is a graded-PvMD if and only if R is an integrally closed gr-t-quasi-Prüfer domain. Thus Theorem 3.2 implies the following corollary.

Corollary 3.3 ([1, Theorem 6.4]). Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then R is a graded-PvMD if and only if R is a PvMD.

Proposition 3.4. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then the following statements are equivalent:

1. R is a UMT-domain.
2. Every prime ideal of $NA(R,v)$ is extended from a homogeneous prime ideal of $R.$
3. $NA(R,v)$ is a quasi-Prüfer domain.
4. Each homogeneously (t_R,d_T)-linked overring T of R is a gr-quasi-Prüfer domain.

Proof. The equivalences (1) \Leftrightarrow (2) \Leftrightarrow (3) are immediate from Theorems 2.9 and 3.2, and (1) \Leftrightarrow (4) follows from Theorem 2.9.

Let D be an integral domain. A multiplicative subset S of D is called a t-splitting set if each $0 \neq d \in D$ can be written as $dD = (AB)^t,$ where A and
Proof. The following statements are equivalent of Theorem 3.2, one has R invertible for all $0 \neq d \in D$. It is known that D is a UM-domain if and only if $D \setminus \{0\}$ is a t-splitting set of $D[X]$ [8, Corollary 2.9]. In the following theorem we generalized this result to the graded case among other things, which is the second main result in this section. Before that we need a lemma and for an ideal I of R set $C(I) := \sum_{a \in I} C(a)$.

Lemma 3.5. Let $R = \bigoplus_{\alpha \in F} R_{\alpha}$ be a graded integral domain and I be an ideal of R. Then $\mathcal{A}_{I[X]} = C(I)$.

Proof. Assume that $a \in I$. Then $aX \in I[X]$ and so $C(a) = A_{aX} \subseteq A_{I[X]}$. Hence $C(I) \subseteq \mathcal{A}_{I[X]}$. Conversely let $f = \sum_{i=0}^{n} a_iX^i \in I[X]$. Then $\mathcal{A}_{f} = \sum_{i=0}^{n} C(a_i) \subseteq C(I)$. Hence $\mathcal{A}_{I[X]} \subseteq C(I)$.

Theorem 3.6. Let $R = \bigoplus_{\alpha \in F} R_{\alpha}$ be a graded integral domain. Then the following statements are equivalent:

1. R is a UM-domain.
2. If Q is a prime t-ideal in $R[X]$ such that $Q \cap H = \emptyset$, then $(A_Q)^t = R$.
3. Each prime t-ideal Q in $R[X]$ such that $Q \cap H = \emptyset$, is a maximal t-ideal.
4. H is a t-splitting set in $R[X]$.

Proof. (1) \Rightarrow (2). Assume that Q is a prime t-ideal of $R[X]$ such that $Q \cap H = \emptyset$. If Q is an upper to zero, then $(A_Q)^t = R$ by Theorem 3.2. Otherwise $P := Q \cap R \neq 0$ and $P \cap H = \emptyset$. If $P[X] \subseteq Q$, pick $q \in Q \setminus P[X]$, and let Q_1 be an upper to zero in $R[X]$ such that $q \in Q_1 \subseteq Q$ by [11, Theorem A]. Thus using Theorem 3.2, one has $R = (A_{Q_1})^t \subseteq (A_Q)^t \subseteq R$, and then $(A_Q)^t = R$. Now assume that $Q = P[X]$ and that $(A_Q)^t = (C(P))^t \subseteq R$ (Lemma 3.5). Then there exists a homogeneous maximal t-ideal M of R such that $(C(P))^t \subseteq M$. So that $Q = P[X] \subseteq M[X]$ and hence $Q \cap N(v) = \emptyset$. Thus $Q \cap N(v) = \emptyset$. Thus $Q \cap N(v) = \emptyset$. Thus P_{0} of R such that $Q \cap N(v) = P_{0}$ of R by Proposition 3.4. By intersecting this last equality with R, we have $P = P_{0}$, the desired contradiction, since $P \cap H = \emptyset$.

(2) \Leftrightarrow (3) holds by Proposition 3.1.

(3) \Rightarrow (1). Assume that Q is an upper to zero in $R[X]$. Then $Q \cap H = \emptyset$ and Q is a prime t-ideal. Hence Q is a maximal t-ideal by (3), which implies that R is a UM-domain by Theorem 3.2.

(4) \Rightarrow (2). Suppose that H is a t-splitting set in $R[X]$, and let Q be a prime t-ideal of $R[X]$ with $Q \cap H = \emptyset$. For any $0 \neq f \in Q$, let $f[X] = (AB)^t$, where A and B are integral ideals of $R[X]$ such that $A^t \cap sR[X] = sA^t$ for all $s \in H$ and $B^t \cap H \neq \emptyset$. Since $Q \cap H = \emptyset$, $B \not\subseteq Q$, so $A \subseteq Q$. Thus if s is a nonzero homogeneous element in A_{Q}, then $(A, s)^t \subseteq (A_{Q}[X])^t = (A_Q)^t[X]$ [22, Proposition 4.3]. Therefore $R = A_{R[X]} = A_{(A,s)^t} \subseteq A_{(A_Q)^t[X]} = (A_Q)^t \subseteq R$ by Lemma 3.5, and then $(A_Q)^t = R$.

B are integral ideals of D such that $A^t \cap sD = sA^t$ (equivalently, $(A, s)^t = D$) for all $s \in S$ and $B^t \cap S \neq \emptyset$. The notion of t-splitting sets was introduced in [3], where it is shown that S is a t-splitting set of D if and only if $dD_S \cap D$ is t-invertible for all $0 \neq d \in D$. It is known that D is a UM-domain if and only if $D \setminus \{0\}$ is a t-splitting set of $D[X]$ [8, Corollary 2.9]. In the following theorem we generalized this result to the graded case among other things, which is the second main result in this section. Before that we need a lemma and for an ideal I of R set $C(I) := \sum_{a \in I} C(a)$.
(2) ⇒ (4). Let $0 ≠ g ∈ R[X]$, and let $J = gR[X]_H ∩ R[X] = gR_H[X] ∩ R[X]$. By [3, Corollary 2.3], to show that H is a t-splitting set, it suffices to show that J is t-invertible. We first show that $(A_J)^t = R$. Assume $(A_J)^t ⊆ R$, and let P be a maximal t-ideal of R containing $(A_J)^t$. Note that we have $J ⊆ A_J[X] ⊆ (A_J)^t[X] ⊆ P[X]$. Let Q be a prime ideal of $R[X]$ minimal over J such that $Q ⊆ P[X]$. Then Q is a t-ideal (since J is a t-ideal of $R[X]$ by [26, Lemma 3.17]), and since P is homogeneous by [4, Lemma 1.2], we have $(A_Q)^t ⊆ (A_{P[X]})^t = C(P)^t = P$ using Lemma 3.5. Assume that $Q ∩ H = ∅$. Then by the hypothesis $R = (A_Q)^t ⊆ P$ which is a contradiction. Hence we have $Q ∩ H ≠ ∅$. Let $0 ≠ x ∈ Q ∩ H$. Then there are a $y ∉ Q$ and a nonnegative integer n such that $yx^n ∈ J$ [24, Theorem 2.1], whence $y ∈ gR[X]_H ∩ R[X] = J ⊆ Q$. This contradiction shows that $(A_J)^t = R$.

Let $f_1, \ldots, f_n ∈ J$ such that $(A_{f_1} + \cdots + A_{f_n})^t = R$, and let $I = (g, f_1, \ldots, f_n)^t$ (so $IR_H[X] = gR_H[X] = JR_H[X]$ using [22, Proposition 4.3]). Let M be a maximal t-ideal of $R[X]$. If $M ∩ H = ∅$, then M_H is a prime ideal of $R_H[X]$, and thus $IR_H[X]_M = (IR_H[X])_{M_H} = (gR_H[X])_{M_H} = (JR_H[X])_{M_H} = JR[X]_M$. If $M ∩ H ≠ ∅$, then $P := M ∩ R ≠ ∅$, and $M = (M ∩ R)[X] = P[X]$ by [23, Proposition 1.1]. Note that P is a homogeneous maximal t-ideal of R ([23, Proposition 1.1] and [4, Lemma 1.2]). If $I ⊆ M$, then $R = (A_I)^t ⊆ (A_M)^t ⊆ R$. But by Lemma 3.5, we have $(A_M)^t = (A_{P[X]})^t = (C(P))^t = P$ which is a contradiction. Therefore we have $I ∉ M$. By the same reasoning $J ∉ M$. Hence $IR[X]_M = R[X]_M = JR[X]_M$. Thus $J = I$ by [26, Proposition 2.8], and since I is t-locally principal, $I = J$ is t-invertible by [26, Corollary 2.7].

Corollary 3.7 ([8, Corollary 2.9]). Let D be an integral domain. Then D is a UM-domain if and only if $D \setminus \{0\}$ is a t-splitting set of $D[X]$.

A saturated multiplicative subset S of D is called a splitting set if for each $0 ≠ d ∈ D$, $d = s′a$ for some $s ∈ S$ and $a ∈ D$ with $aD ∩ s′D = as′D$ for all $s′ ∈ S$. The concept of splitting sets was introduced by Gilmer and Parker [21], where they proved that if S is a splitting set generated by prime elements, then D is a UFD if D_S is a UFD. Note that a t-splitting set of a GCD-domain is a splitting set. The following corollary gives a new characterization of (graded) GCD-domains. Recall from [1] that a graded integral domain $R = \bigoplus_{0 ∈ \Gamma} R_α$ is a graded GCD-domain if each pair of nonzero homogeneous elements of R has a GCD.

Corollary 3.8. Let $R = \bigoplus_{0 ∈ \Gamma} R_α$ be a graded integral domain. Then the following statements are equivalent:

1. H is a splitting set in $R[X]$.
2. R is a graded GCD-domain.
3. R is a GCD-domain.

Proof. (1) ⇒ (2). Assume that H is a splitting set in $R[X]$. Then for each $0 ≠ f ∈ R[X]$, $f = ag$ where $a ∈ H$ and $g ∈ R[X]$ with $(g, s)_v = R[X]$ for all
The following theorem connects the gr-\star_f-quasi-Prüfer domains to UM\mathcal{T}-domains for (semi)star operation \star on R.

Theorem 3.9. Assume that \star is a (semi)star operation on R. Then the following statements are equivalent:

1. R is a gr-\star_f-quasi-Prüfer domain.
2. Each homogeneously (\star_f,t)-linked overring of R is a UM\mathcal{T}-domain and each element of h-$\text{Max}^{*}_{t}(R)$ is a t_{R}-ideal.
3. R is a UM\mathcal{T}-domain and each element of h-$\text{Max}^{\vee}(R)$ is a t_{R}-ideal.
4. R is a UM\mathcal{T}-domain and, $\tilde{\star}$ and \tilde{w}_{R} coincide on nonzero homogeneous ideals.

Proof. (1) \Rightarrow (3). Since $\star_f \leq t_{R}$ and R is a gr-\star_f-quasi-Prüfer domain, then R is a gr-t_{R}-quasi-Prüfer domain and thus is a UM\mathcal{T}-domain by Theorem 3.2. Let P be an element of h-$\text{Max}^{\vee}(R)$. By Theorem 2.9, R_{P} is a quasi-Prüfer domain and by [9, Corollary 1.3], PR_{P} is a t-ideal of R_{P}. Thus $P = PR_{P} \cap R$ is a t_{R}-ideal by [26, Lemma 3.17].

(3) \Rightarrow (4). The second part of (3) implies that h-$\text{Max}^{\vee}(R) = h$-$\text{Max}^{t_{R}}(R)$. Thus $\tilde{\star}$ and \tilde{w}_{R} coincide on homogeneous ideals using [32, Proposition 2.6].

(4) \Rightarrow (3). If $\tilde{\star}$ and \tilde{w}_{R} coincide on homogeneous ideals, then h-$\text{Max}^{\vee}(R) = h$-$\text{Max}^{t_{R}}(R) = h$-$\text{Max}^{\vee}(R)$ by [32, Proposition 2.5]. So that each element of h-$\text{Max}^{\vee}(R)$ is a t_{R}-ideal.

(3) \Rightarrow (1). Since each element of h-$\text{Max}^{\vee}(R)$ is a t_{R}-ideal, one has h-$\text{Max}^{\vee}(R) = h$-$\text{Max}^{t_{R}}(R)$. Thus $N(\star) = N(t_{R})$ and hence $\text{NA}(R,\star) = \text{NA}(R, t_{R})$. Now Theorem 2.9, completes the proof.

(1) \Rightarrow (2). Assume that T is a homogeneously (\star_f, t_{T})-linked overring of R. Thus $\text{NA}(T, t_{T})$ is an overring of $\text{NA}(R, \star_f)$ by [33, Lemma 2.8]. Using Theorem 2.9, we have $\text{NA}(R, \star_f)$ has Prüfer integral closure. Hence $\text{NA}(T, t_{T})$ has Prüfer integral closure. Therefore T is a UM\mathcal{T}-domain by Proposition 3.4. Moreover each element of h-$\text{Max}^{\vee}(R)$ is a t_{R}-ideal by (1) \Rightarrow (3).

(2) \Rightarrow (3) is trivial. □

A homogeneous overring T of R is called a **homogeneously t-linked overring** of R if, it is homogeneously (t_{R}, t_{T})-linked overring of R.

Corollary 3.10. A graded integral domain R is a UM\mathcal{T}-domain if and only if each homogeneously t-linked overring of R is a UM\mathcal{T}-domain.
The following corollary shows that a graded integral domain R is a gr-quasi-
Prüfer domain if and only if it is a UMT-domain and d_R and w_R coincide on
homogeneous ideals.

Corollary 3.11. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ be a graded integral domain. Then the
following statements are equivalent:

1. R is a gr-quasi-Prüfer domain.
2. Each homogeneous overring T of R is a UMT-domain and each element
 of h-Max(R) is a t-ideal.
3. R is a UMT-domain and each element of h-Max(R) is a t-ideal.
4. R is a UMT-domain and, d_R and w_R coincide on nonzero homogeneous
 ideals.

From Corollary 3.11, and the fact that height one primes are t-ideals we
can show that if R is a one dimensional graded integral domain, then R is a
gr-quasi-Prüfer domain if and only if R is a quasi-Prüfer domain. But it is not
the case in general, see Example 3.14(2).

Lemma 3.12. Let \ast be a (semi)star operation on a graded integral domain $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$. Then the
following statements are equivalent:

1. R is a GP\astMD.
2. R is a PvMD and $\tilde{\ast}$ and t coincide on homogeneous ideals.
3. R is a PvMD and $\ast f$ and t coincide on homogeneous ideals.

Proof. (1) \Rightarrow (2). Since R is a GP\astMD, and $\ast \leq v$, one has R is a GPvMD by [32], and hence R is a PvMD by [1, Theorem 6.4] (or Corollary 3.3). Also h-Spec$^f(R) \subseteq h$-Spec$^v(R)$. On the other hand if $P \in h$-Spec$^v(R)$, then R_P

Corollary 3.13. Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$. Set $\tilde{R} = (\tilde{R})^{w_R}$ and let $\tilde{\iota} : R \hookrightarrow \tilde{R}$ be the canonical embedding. Then the following statements are equivalent:

1. R is a gr-t-quasi-Prüfer (or a UMT-)domain.
2. \tilde{R} is a GP$(w_R)^{t}$MD.
3. \tilde{R} is a P$(w_R)^{t}$MD.
4. \tilde{R} is a P$v_{\tilde{R}}$MD and $(w_R)^{t}$ and $w_{\tilde{R}}(= t_{\tilde{R}})$ coincide on homogeneous ideals.
5. \tilde{R} is a P$v_{\tilde{R}}$MD and $(w_R)^t = w_{\tilde{R}} = t_{\tilde{R}}$.

Proof. (1) \Leftrightarrow (2) is true by Theorem 2.9, (2) \Leftrightarrow (4) holds by Lemma 3.12, and (1) \Leftrightarrow (3) \Leftrightarrow (5) holds by [9, Corollary 2.18].
In the following we give an example of a gr-quasi-Pr"ufer domain which is not a quasi-Pr"ufer domain.

Example 3.14. (1) Let $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$. If d_R and w_R coincide on homogeneous ideals, then we do not have necessarily $d_R = w_R$. Let D be an integral domain, X be an indeterminate over D, and $R := D[X, X^{-1}]$. It is shown in [5, Example 3.6], that R is a graded-Pr"ufer domain if and only if D is a Pr"ufer domain and R is a Pr"ufer domain if and only if D is a field. Assume further that D is a non-field Pr"ufer domain. Then R is a graded-Pr"ufer domain. Thus by Lemma 3.12, R is a PνMD and d_R and w_R coincide on homogeneous ideals. If $d_R = w_R$, then R must be a Pr"ufer domain, and so D is a field, a contradiction.

(2) Assume that D is a non-Pr"ufer quasi-Pr"ufer domain (e.g. $D = K[Y^2, Y^3]$ for a field K and Y an indeterminate over K) and set $R := D[X, X^{-1}]$. Then $\overline{R} := \overline{D}[X, X^{-1}]$ is a graded-Pr"ufer domain and so R is a gr-quasi-Pr"ufer domain by Corollary 2.10. Now if R is a quasi-Pr"ufer domain, we have \overline{D} is a field which implies that D is a field which is a contradiction.

Acknowledgment. The authors would like to thank the referee for his/her careful reading and valuable suggestion that improve the earlier version.

References

204 H. HAMDI AND P. SAHANDI

Haleh Hamdi
DEPARTMENT OF PURE MATHEMATICS
FACULTY OF MATHEMATICAL SCIENCES
UNIVERSITY OF TABRIZ
TABRIZ 51666-14766, IRAN
Email address: h.hamdimoghadam@tabrizu.ac.ir

Parviz Sahandi
DEPARTMENT OF PURE MATHEMATICS
FACULTY OF MATHEMATICAL SCIENCES
UNIVERSITY OF TABRIZ
TABRIZ 51666-14766, IRAN
Email address: sahandi@ipm.ir