DOI QR코드

DOI QR Code

Ginseng and obesity

  • Li, Zhipeng (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Ji, Geun Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Received : 2016.11.06
  • Accepted : 2016.12.08
  • Published : 2018.01.15

Abstract

Although ginseng has been shown to have an antiobesity effect, antiobesity-related mechanisms are complex and have not been completely elucidated. In the present study, we evaluated ginseng's effects on food intake, the digestion, and absorption systems, as well as liver, adipose tissue, and skeletal muscle in order to identify the mechanisms involved. A review of previous in vitro and in vivo studies revealed that ginseng and ginsenosides can increase energy expenditure by stimulating the adenosine monophosphate-activated kinase pathway and can reduce energy intake. Moreover, in high fat dietinduced obese and diabetic individuals, ginseng has shown a two-way adjustment effect on adipogenesis. Nevertheless, most of the previous studies into antiobesity effects of ginseng have been animal based, and there is a paucity of evidence supporting the suggestion that ginseng can exert an antiobesity effect in humans.

Keywords

References

  1. Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, Zimmet P, Son H-Y. Epidemic obesity and type 2 diabetes in Asia. Lancet 2006;368:1681-8. https://doi.org/10.1016/S0140-6736(06)69703-1
  2. Bojanowska E, Ciosek J. Can we selectively reduce appetite for energy-dense foods? An overview of pharmacological strategies for modification of food preference behavior. Curr Neuropharmacol 2016;14:118-42. https://doi.org/10.2174/1570159X14666151109103147
  3. Wood S. Diet drug orlistat linked to kidney, pancreas injuries. Medscape. Medscape News. Retrieved. 2011. p. 26.
  4. Kim D. Intestinal microflora activate the pharmacological effects of herbal medicines. Nat Prod Sci 2002;8:35-43.
  5. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Disposition 2003;31:1065-71. https://doi.org/10.1124/dmd.31.8.1065
  6. Thaler JP, Schwartz MW. Inflammation and obesity pathogenesis: the hypothalamus heats up. Endocr Rev 2010;151:4109-15. https://doi.org/10.1210/en.2010-0336
  7. Manousopoulou A, Koutmani Y, Karaliota S, Woelk C, Manolakos E, Karalis K, Garbis S. Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation. Nut Diab 2016;6:e204. https://doi.org/10.1038/nutd.2016.10
  8. Wu Y, Yu Y, Szabo A, Han M, Huang XF. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PLoS One 2014;9:e92618. https://doi.org/10.1371/journal.pone.0092618
  9. Lee YS, Cha BY, Yamaguchi K, Choi SS, Yonezawa T, Teruya T, Nagai K, Woo JT. Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice. Cytotechnology 2010;62:367-76. https://doi.org/10.1007/s10616-010-9288-7
  10. Kim JH, Kang SA, Han SM, Shim I. Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother Res 2009;23:78-85. https://doi.org/10.1002/ptr.2561
  11. Yun SN, Ko SK, Lee KH, Chung SH. Vinegar-processed ginseng radix improves metabolic syndrome induced by a high fat diet in ICR mice. Arch Pharm Res 2007;30:587-95. https://doi.org/10.1007/BF02977653
  12. Lee MR, Kim BC, Kim R, Oh HI, Kim HK, Choi KJ, Sung CK. Anti-obesity effects of black ginseng extract in high fat diet-fed mice. J Ginseng Res 2013;37: 308-14. https://doi.org/10.5142/jgr.2013.37.308
  13. Zhang Y, Yu L, Cai W, Fan S, Feng L, Ji G, Huang C. Protopanaxatriol, a novel $PPAR{\gamma}$ antagonist from Panax ginseng, alleviates steatosis in mice. Sci Rep 2014;4.
  14. Seo YS, Shon MY, Kong R, Kang OH, Zhou T, Kim DY, Park JD, Kwon DY. Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. J Ethnopharmacol 2016;190:231-40. https://doi.org/10.1016/j.jep.2016.05.060
  15. Lee H, Park D, Yoon M. Korean red ginseng (Panax ginseng) prevents obesity by inhibiting angiogenesis in high fat diet-induced obese C57BL/6J mice. Food Chem Toxicol 2013;53:402-8. https://doi.org/10.1016/j.fct.2012.11.052
  16. Yuan HD, Kim JT, Chung SH. Pectinase-processed Ginseng radix (GINST) ameliorates hyperglycemia and hyperlipidemia in high fat diet-fed ICR mice. Biomol Ther 2012;20:220-5. https://doi.org/10.4062/biomolther.2012.20.2.220
  17. Lee H, Kim M, Shin SS, Yoon M. Ginseng treatment reverses obesity and related disorders by inhibiting angiogenesis in female db/db mice. J Ethnopharmacol 2014;155:1342-52. https://doi.org/10.1016/j.jep.2014.07.034
  18. Shen L, Xiong Y, Wang DQ, Howles P, Basford JE, Wang J, Xiong YQ, Hui DY, Woods SC, Liu M. Ginsenoside Rb1 reduces fatty liver by activating AMPactivated protein kinase in obese rats. J Lipid Res 2013;54:1430-8. https://doi.org/10.1194/jlr.M035907
  19. Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M, Kimura Y, Feng Y. Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice. Phytomedicine 2008;15:1140-5. https://doi.org/10.1016/j.phymed.2008.07.002
  20. Liu R, Zhang J, Liu W, Kimura Y, Zheng Y. Anti-obesity effects of protopanaxdiol types of ginsenosides isolated from the leaves of American ginseng (Panax quinquefolius L.) in mice fed with a high-fat diet. Fitoterapia 2010;81:1079-87. https://doi.org/10.1016/j.fitote.2010.07.002
  21. Ko SK, Bae HM, Cho OS, Im BO, Chung SH, Lee BY. Analysis of ginsenoside composition of ginseng berry and seed. Food Sci Biotechnol 2008;17:1379-82.
  22. Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J agric Food Chem 2007;55:2824-8. https://doi.org/10.1021/jf0628025
  23. Jung S, Lee MS, Shin Y, Kim CT, Kim IH, Kim YS, Kim Y. Anti-obesity and antiinflammatory effects of high hydrostatic pressure extracts of ginseng in high-fat diet induced obese rats. J Funct Foods 2014;10:169-77. https://doi.org/10.1016/j.jff.2014.06.007
  24. Chang TC, Huang SF, Yang TC, Chan FN, Lin HC, Chang WL. Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered $Na^{+}$/glucose cotransporter 1 expression. J Agric Food Chem 2007;55: 1993-8. https://doi.org/10.1021/jf062714k
  25. Wang CW, Su SC, Huang SF, Huang YC, Chan FN, Kuo YH, Hung MW, Lin HC, Chang WL, Chang TC. An essential role of cAMP response element binding protein in ginsenoside Rg1-mediated inhibition of $Na^{+}$/glucose cotransporter 1 gene expression. Mol Pharmacol 2015;88:1072-83. https://doi.org/10.1124/mol.114.097352
  26. Winder W, Hardie D. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 1999;277:E1-10. https://doi.org/10.1152/ajpendo.1999.277.1.E1
  27. Do Y, Kim JS, Yuan HD, Chung SH. Fermented ginseng attenuates hepatic lipid accumulation and hyperglycemia through AMPK activation. Food Sci Biotechnol 2009;18:172-8.
  28. Lee MS, Kim CT, Kim IH, Kim Y. Effects of Korean Red Ginseng extract on hepatic lipid accumulation in HepG2 cells. Biosci Biotechnol Biochem 2015;79:816-9. https://doi.org/10.1080/09168451.2014.997186
  29. Quan HY, Yuan HD, Jung MS, Ko SK, Park YG, Chung SH. Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int J Mol Med 2012;29:73.
  30. Kim SJ, Yuan HD, Chung SH. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol Pharm Bull 2010;33:325-8. https://doi.org/10.1248/bpb.33.325
  31. Quan HY, Yuan HD, Zhang Y, Chung SH. Korean red ginseng attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. Food Sci Biotechnol 2010;19:207-12. https://doi.org/10.1007/s10068-010-0028-8
  32. Lee HJ, Park SK, Han SJ, Kim SH, Hur KY, Kang ES, Ahn CW, Cha BS, Kim KS, Lee HC. Korean Red Ginseng activates AMPK in skeletal muscle and liver. Diabetes 2007;56:pA448.
  33. Lee S, Lee MS, Kim CT, Kim IH, Kim Y. Ginsenoside Rg3 reduces lipid accumulation with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Int J Mol Sci 2012;13:5729-39. https://doi.org/10.3390/ijms13055729
  34. Chang WL, Ho YH, Huang YC, Huang SF, Lin JY, Lin HC, Chang TC. The inhibitory effect of ginsenoside Rg1 on glucose and lipid production in human HepG2 cells. Adaptive Med 2013;5:181-8. https://doi.org/10.4247/AM.2013.ABD068
  35. Lee MS, Shin Y, Kim Y. Effect of the high hydrostatic pressure extract of Korean ginseng on hepatic lipid metabolism and AMP-activated protein kinase activation in HepG2 cells (1045.25). FASEB J 2014;28. 1045.1025.
  36. Sekiya K, Okuda H, Hotta Y, Arichi S. Enhancement of adipose differentiation of mouse 3T3-L1 fibroblasts by ginsenosides. Phytother Res 1987;1:58-60. https://doi.org/10.1002/ptr.2650010203
  37. Masuno H, Kitao H, Okuda H. Ginsenosides increase secretion of lipoprotein lipase by 3T3-L1 adipocytes. Biosci Biotechnol Biochem 1996;60:1962-5. https://doi.org/10.1271/bbb.60.1962
  38. Shang W, Yang Y, Jiang B, Jin H, Zhou L, Liu S. Ginsenoside Rb 1 promotes adipogenesis in 3T3-L1 cells by enhancing $PPAR{\gamma}$ 2 and $C/EBP{\alpha}$ gene expression. Life Sci 2007;80:618-25. https://doi.org/10.1016/j.lfs.2006.10.021
  39. Han KL, Jung MH, Sohn JH, Hwang JK. Ginsenoside 20 (S)-protopanaxatriol (PPT) activates peroxisome proliferator-activated receptor. GAMMA. (PPAR. GAMMA.) in 3T3-L1 Adipocytes. Biol Pharm Bull 2006;29:110-3. https://doi.org/10.1248/bpb.29.110
  40. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, Kim HS, Ha J, Kim MS, Kwon DY. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem Biophys Res Commun 2007;364:1002-8. https://doi.org/10.1016/j.bbrc.2007.10.125
  41. Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides Rb1 and Rg1 suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance ${\beta}$-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem 2008;72:2815-23. https://doi.org/10.1271/bbb.80205
  42. Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008;198:561-9. https://doi.org/10.1677/JOE-08-0104
  43. Hwang JT, Lee MS, Kim HJ, Sung MJ, Kim HY, Kim MS, Kwon DY. Antiobesity effect of ginsenoside Rg3 involves the AMPK and $PPAR-{\gamma}$ signal pathways. Phytother Res 2009;23:262-6. https://doi.org/10.1002/ptr.2606
  44. Kim EJ, Lee HI, Chung KJ, Noh YH, Ro YT, Koo JH. The ginsenoside-Rb2 lowers cholesterol and triacylglycerol levels in 3T3-L1 adipocytes cultured under high cholesterol or fatty acids conditions. BMB Rep 2009;42:194-9. https://doi.org/10.5483/BMBRep.2009.42.4.194
  45. Huang YC, Lin CY, Huang SF, Lin HC, Chang WL, Chang TC. Effect and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1 adipocytes. J Agric Food Chem 2010;58:6039-47. https://doi.org/10.1021/jf9034755
  46. Niu CS, Yeh CH, Yeh MF, Cheng JT. Increase of adipogenesis by ginsenoside (Rh2) in 3T3-L1 cell via an activation of glucocorticoid receptor. Horm Metab Res 2009;41:271-6. https://doi.org/10.1055/s-0028-1103277
  47. Kim SN, Lee JH, Shin H, Son SH, Kim YS. Effects of in vitro-digested ginsenosides on lipid accumulation in 3T3-L1 adipocytes. Planta Med 2009;75:596-601. https://doi.org/10.1055/s-0029-1185358
  48. Kim SO. Ginseng saponin-Re and Coix lachrymajobi var. mayuen regulate obesity related genes expressions, TNF-alpha, leptin, lipoprotein lipase and resistin in 3T3-L1 adipocytes. J Life Sci 2007;17:1523-32. https://doi.org/10.5352/JLS.2007.17.11.1523
  49. Kim SO, Lee HE, Choe WK. The effects of ginseng saponin-Re, Rc and green tea catechine; ECGC (epigallocatechin gallate) on leptin, hormone sensitive lipase and resistin mRNA expressions in 3T3-L1 adipocytes. Korean J Nutr 2006;39:748-55.
  50. Yeo CR, Lee SM, Popovich DG. Ginseng (Panax quinquefolius) reduces cell growth, lipid acquisition and increases adiponectin expression in 3T3-L1 cells. Evid Based Complement Alternat Med 2011;2011.
  51. Yeo CR, Yang C, Wong TY, Popovich DG. A quantified ginseng (Panax ginseng CA Meyer) extract influences lipid acquisition and increases adiponectin expression in 3T3-L1 cells. Molecules 2011;16:477-92. https://doi.org/10.3390/molecules16010477
  52. Lee OH, Lee HH, Kim JH, Lee BY. Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother Res 2011;25:768-73. https://doi.org/10.1002/ptr.3322
  53. Park D, Yoon M, Compound K. a novel ginsenoside metabolite, inhibits adipocyte differentiation in 3T3-L1 cells: involvement of angiogenesis and MMPs. Biochem Biophys Res Commun 2012;422:263-7. https://doi.org/10.1016/j.bbrc.2012.04.142
  54. Oh J, Lee H, Park D, Ahn J, Shin SS, Yoon M. Ginseng and its active components ginsenosides inhibit adipogenesis in 3T3-L1 cells by regulating MMP-2 and MMP-9. Evid Based Complement Alternat Med 2012;2012:265023.
  55. Lim G, Lee H, Kim EJ, Noh YH, Ro Y, Koo JH. Ginsenoside Rb2 upregulates the low density lipoprotein receptor gene expression through the activation of the sterol regulated element binding protein maturation in HepG2 cells. J Ginseng Res 2005;29:159-66. https://doi.org/10.5142/JGR.2005.29.4.159
  56. Lee MS, Hwang JT, Sh Kim, Yoon S, Kim MS, Yang HJ, Kwon DY. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J Ethnopharmacol 2010;127:771-6. https://doi.org/10.1016/j.jep.2009.11.022
  57. Lee HM, Lee OH, Kim KJ, Lee BY. Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells. Phytother Res 2012;26:1017-22. https://doi.org/10.1002/ptr.3686
  58. Lee HJ, Yh Lee, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka LongeEvans Tokushima fatty rats. Metabolism 2009;58:1170-7. https://doi.org/10.1016/j.metabol.2009.03.015
  59. Cha JY, Park EY, Kim HJ, Park SU, Nam KY, Choi JE, Jun HS. Effect of white, taegeuk, and red ginseng root extracts on insulin-stimulated glucose uptake in muscle cells and proliferation of ${\beta}$-cells. J Ginseng Res 2010;34:192-7. https://doi.org/10.5142/jgr.2010.34.3.192
  60. Hwang JT, Lee M, Kim M, Kwon DY. Biological active components found in Panax ginseng improve glucose uptake via AMPK signaling pathway. FASEB J 2008;22:683.
  61. Yuan HD, Huang B, Quan HY, Chung SH. Ginsenoside 20 (R)-Rg3 stimulates glucose uptake in C2C12 myotubes via CaMKK-AMPK pathways. Food Sci Biotechnol 2010;19:1277-82. https://doi.org/10.1007/s10068-010-0182-z
  62. Lee HM, Lee OH, Lee BY. Effect of ginsenoside Rg3 and Rh2 on glucose uptake in insulin-resistant muscle cells. J Korean Soc Appl Biological Chem 2010;53: 106-9.
  63. Tabandeh MR, Jafari H, Hosseini SA, Hashemitabar M. Ginsenoside Rb1 stimulates adiponectin signaling in C2C12 muscle cells through upregulation of AdipoR1 and AdipoR2 proteins. Pharm Biol 2015;53:125-32. https://doi.org/10.3109/13880209.2014.912237
  64. Kim MJ, Koo YD, Kim M, Lim S, Park YJ, Chung SS, Jang HC, Park KS. Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis in C2C12 myotubes. Diabetes Metab J 2016;40.
  65. Yuan HD, Quan HY, Jung MS, Kim SJ, Huang B, Kim DY, Chung SH. Antidiabetic effect of pectinase-processed ginseng radix (GINST) in high fat dietfed ICR mice. J Ginseng Res 2011;35:308-14. https://doi.org/10.5142/jgr.2011.35.3.308
  66. Song YB, An YR, Kim SJ, Park HW, Jung JW, Kyung JS, Hwang SY, Kim YS. Lipid metabolic effect of Korean red ginseng extract in mice fed on a high-fat diet. J Sci Food Agric 2012;92:388-96. https://doi.org/10.1002/jsfa.4589
  67. Kim CM, Yi SJ, Cho IJ, Ku SK. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients 2013;5:4316-32. https://doi.org/10.3390/nu5114316
  68. Qureshi A, Abuirmeileh N, Din Z, Ahmad Y, Burger W, Elson C. Suppression of cholesterogenesis and reduction of LDL cholesterol by dietary ginseng and its fractions in chicken liver. Atherosclerosis 1983;48:81-94. https://doi.org/10.1016/0021-9150(83)90019-9
  69. Kim JH, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J Pharmacol Sci 2005;97:124-31. https://doi.org/10.1254/jphs.FP0040184
  70. Yun SN, Moon SJ, Ko SK, Im BO, Chung SH. Wild ginseng prevents the onset of high-fat diet induced hyperglycemia and obesity in ICR mice. Arch Pharm Res 2004;27:790-6. https://doi.org/10.1007/BF02980150
  71. Lee SH, Lee HJ, Yh Lee, Lee BW, Cha BS, Kang ES, Ahn CW, Park JS, Kim HJ, Lee EY. Korean red ginseng (Panax ginseng) improves insulin sensitivity in high fat fed SpragueeDawley rats. Phytother Res 2012;26:142-7. https://doi.org/10.1002/ptr.3610
  72. Gu W, Kim KA, Kim DH. Ginsenoside Rh1 ameliorates high fat diet-induced obesity in mice by inhibiting adipocyte differentiation. Biol Pharm Bull 2013;36:102-7.
  73. Park MY, Lee KS, Sung MK. Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-${\alpha}$, PPAR-$\gamma$, and LPL mRNA expressions. Life Sci 2005;77:3344-54. https://doi.org/10.1016/j.lfs.2005.05.043
  74. Xie J, Wang C, Ni M, Wu J, Mehendale S, Aung H, Foo A, Yuan C. American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice. J Food Sci 2007;72:S590-4. https://doi.org/10.1111/j.1750-3841.2007.00481.x
  75. Mollah ML, Kim GS, Moon HK, Chung SK, Cheon YP, Kim JK, Kim KS. Antiobesity effects of wild ginseng (Panax ginseng CA Meyer) mediated by $PPAR-{\gamma}$, GLUT4 and LPL in ob/ob mice. Phytother Res 2009;23:220-5. https://doi.org/10.1002/ptr.2593
  76. Zheng JS, Fu YQ, Chen Q, Huang T, Yang J, Li D. Consumption of Chinese teaflavor liquor improves circulating insulin levels without affecting hepatic lipid metabolism-related gene expression in SpragueeDawley rats. Sci World J 2013;2013.
  77. Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y, Okumura T. Increased expression of $PPAR{\gamma}$ in high fat dietinduced liver steatosis in mice. Biochem Biophys Res Commun 2005;336: 215-22. https://doi.org/10.1016/j.bbrc.2005.08.070
  78. Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002;123:1705-25. https://doi.org/10.1053/gast.2002.36572
  79. Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014;59:713-23. https://doi.org/10.1002/hep.26672
  80. Jones ML, Tomaro-Duchesneau C, Prakash S. The gut microbiome, probiotics, bile acids axis, and human health. Trends Microbiol 2014;22:306-8. https://doi.org/10.1016/j.tim.2014.04.010
  81. Kawase A, Yamada A, Gamou Y, Tahara C, Takeshita F, Murata K, Matsuda H, Samukawa K, Iwaki M. Increased effects of ginsenosides on the expression of cholesterol $7{\alpha}$-hydroxylase but not the bile salt export pump are involved in cholesterol metabolism. J Nat Med 2013;67:545-53. https://doi.org/10.1007/s11418-012-0713-4
  82. Kawase A, Yamada A, Gamou Y, Tahara C, Takeshita F, Murata K, Matsuda H, Samukawa K, Iwaki M. Effects of ginsenosides on the expression of cytochrome P450s and transporters involved in cholesterol metabolism. J Nat Med 2014;68:395-401. https://doi.org/10.1007/s11418-013-0791-y
  83. Ikehara M, Shibata Y, Higashi T, Sanada S, Shoji J. Effect of ginseng saponins on cholesterol metabolism: III. Effect of ginsenoside-Rb1 on cholesterol synthesis in rats fed on high-fat diet. Chem Pharm Bull (Tokyo) 1978;26: 2844-9. https://doi.org/10.1248/cpb.26.2844
  84. Lim G, Lee HI, Kim EJ, Ro YT, Noh YH, Koo JH. The mechanism of LDL receptor up-regulation by ginsenoside-Rb 2 in HepG2 cultured under enriched cholesterol condition. J Ginseng Res 2004;28:87-93. https://doi.org/10.5142/JGR.2004.28.2.087
  85. Muwalla MM, Abuirmeileh NM. Suppression of avian hepatic cholesterogenesis by dietary ginseng. J Nur Biochem 1990;1:518-21. https://doi.org/10.1016/0955-2863(90)90034-I
  86. Jones JR, Barrick C, Kim KA, Lindner J, Blondeau B, Fujimoto Y, Shiota M, Kesterson RA, Kahn BB, Magnuson MA. Deletion of $PPAR{\gamma}$ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci 2005;102:6207-12. https://doi.org/10.1073/pnas.0306743102
  87. Valsamakis G, McTernan PG, Chetty R, Al Daghri N, Field A, Hanif W, Barnett A, Kumar S. Modest weight loss and reduction in waist circumference after medical treatment are associated with favorable changes in serum adipocytokines. Metabolism 2004;53:430-4. https://doi.org/10.1016/j.metabol.2003.11.022
  88. Crandall DL, Goldstein BM, Huggins F, Cervoni P. Adipocyte blood flow: influence of age, anatomic location, and dietary manipulation. Am J Physiol Regul Integr Comp Physiol 1984;247:R46-51. https://doi.org/10.1152/ajpregu.1984.247.1.R46
  89. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005;46:2347-55. https://doi.org/10.1194/jlr.M500294-JLR200
  90. Strissel KJ, Stancheva Z, Miyoshi H, Perfield JW, DeFuria J, Jick Z, Greenberg AS, Obin MS. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007;56:2910-8. https://doi.org/10.2337/db07-0767
  91. Durante PE, Mustard KJ, Park SH, WinderWW,Hardie DG. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. Am J Physiol Endocrinol Metab 2002;283:E178-86. https://doi.org/10.1152/ajpendo.00404.2001
  92. Jung HL, Kang HY. Effects of Korean red ginseng supplementation on muscle glucose uptake in high-fat fed rats. Chin J Nat Med 2013;11. 494-499:406-13.
  93. Kim SH, Park KS. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 2003;48:511-3. https://doi.org/10.1016/S1043-6618(03)00189-0
  94. Reeds DN, Patterson BW, Okunade A, Holloszy JO, Polonsky KS, Klein S. Ginseng and ginsenoside Re do not improve ${\beta}$-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care 2011;34:1071-6. https://doi.org/10.2337/dc10-2299
  95. Kwon DH, Bose S, Song MY, Lee MJ, Lim CY, Kwon BS, Kim HJ. Efficacy of Korean red ginseng by single nucleotide polymorphism in obese women: randomized, double-blind, placebo-controlled trial. J Ginseng Res 2012;36:1769.
  96. Cho YH, Ahn SC, Lee SY, Jeong DW, Choi EJ, Kim YJ, Lee JG, Lee YH, Shin BC. Effect of Korean red ginseng on insulin sensitivity in non-diabetic healthy overweight and obese adults. Asia Pac J Clin Nutr 2013;22:365-71.
  97. Park BJ, Lee YJ, Lee HR, Jung DH, Na HY, Kim HB, Shim JY. Effects of Korean red ginseng on cardiovascular risks in subjectswithmetabolic syndrome: a doubleblind randomized controlled study. Korean J Fam Med 2012;33:190-6. https://doi.org/10.4082/kjfm.2012.33.4.190
  98. Song MY, Kim BS, Kim H. Influence of Panax ginseng on obesity and gut microbiota in obese middle-aged Korean women. J Ginseng Res 2014;38: 106-15. https://doi.org/10.1016/j.jgr.2013.12.004
  99. Jung DH, Lee YJ, Kim CB, Kim JY, Shin SH, Park JK. Effects of ginseng on peripheral blood mitochondrial DNA copy number and hormones in men with metabolic syndrome: A randomized clinical and pilot study. Complement Ther Med 2016;24:40-6. https://doi.org/10.1016/j.ctim.2015.12.001
  100. Yim JS, Kim YS, Moon SK, Cho KH, Bae HS, Kim JJ, Park EK, Kim DH. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol Pharm Bull 2004;27:1580-3. https://doi.org/10.1248/bpb.27.1580

Cited by

  1. Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK vol.10, pp.7, 2018, https://doi.org/10.3390/nu10070830
  2. American Ginseng and Asian Ginseng Intervention in Diet-Induced Obese Mice: Metabolomics Reveals Distinct Metabolic Profiles vol.47, pp.4, 2018, https://doi.org/10.1142/s0192415x19500411
  3. Effects of Rhodiola rosea and Panax ginseng on the Metabolic Parameters of Rats Submitted to Swimming vol.22, pp.10, 2019, https://doi.org/10.1089/jmf.2019.0062
  4. Multi-tissue lipotoxicity caused by high-fat diet feeding is attenuated by the supplementation of Korean red ginseng in mice vol.16, pp.1, 2018, https://doi.org/10.1007/s13273-019-00056-7
  5. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet-induced obese mice via endoplasmic reticulum stress and p-STAT3/STAT3 signaling vol.21, pp.3, 2018, https://doi.org/10.3892/mmr.2020.10935
  6. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet-induced obese mice via endoplasmic reticulum stress and p-STAT3/STAT3 signaling vol.21, pp.3, 2018, https://doi.org/10.3892/mmr.2020.10935
  7. A Combination of Korean Red Ginseng Extract and Glycyrrhiza glabra L. Extract Enhances Their Individual Anti-Obesity Properties in 3T3-L1 Adipocytes and C57BL/6J Obese Mice vol.23, pp.3, 2020, https://doi.org/10.1089/jmf.2019.4660
  8. Ginsenoside Rd Ameliorates High Fat Diet‐Induced Obesity by Enhancing Adaptive Thermogenesis in a cAMP‐Dependent Manner vol.28, pp.4, 2018, https://doi.org/10.1002/oby.22761
  9. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation vol.69, pp.7, 2020, https://doi.org/10.1136/gutjnl-2019-319114
  10. Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng vol.12, pp.9, 2018, https://doi.org/10.3390/nu12092590
  11. Lactobacillus fermentum KP-3-fermented ginseng ameliorates alcohol-induced liver disease in C57BL/6N mice through the AMPK and MAPK pathways vol.11, pp.11, 2018, https://doi.org/10.1039/d0fo02396e
  12. Lipophagy: A New Perspective of Natural Products in Type 2 Diabetes Mellitus Treatment vol.14, pp.None, 2018, https://doi.org/10.2147/dmso.s310166
  13. Protective effect of panaxydol against repeated administration of aristolochic acid on renal function and lipid peroxidation products via activating Keap1‐Nrf2/ARE pathway in rat kidney vol.35, pp.1, 2018, https://doi.org/10.1002/jbt.22619
  14. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8858006
  15. Ginsenosides Improve Nonalcoholic Fatty Liver Disease via Integrated Regulation of Gut Microbiota, Inflammation and Energy Homeostasis vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.622841
  16. Modulation effect of chenpi extract on gut microbiota in high‐fat diet‐induced obese C57BL/6 mice vol.45, pp.4, 2021, https://doi.org/10.1111/jfbc.13541
  17. Effect of Korean Red Ginseng on metabolic syndrome vol.45, pp.3, 2018, https://doi.org/10.1016/j.jgr.2020.11.002
  18. Ginsenoside Ro Ameliorates High-Fat Diet-Induced Obesity and Insulin Resistance in Mice via Activation of the G Protein-Coupled Bile Acid Receptor 5 Pathway vol.377, pp.3, 2018, https://doi.org/10.1124/jpet.120.000435
  19. A network pharmacology approach to explore the potential role of Panax ginseng on exercise performance vol.25, pp.3, 2018, https://doi.org/10.20463/pan.2021.0018
  20. A Systematic Study to Assess Displacement Performance of a Naturally-Derived Surfactant in Flow Porous Systems vol.14, pp.24, 2018, https://doi.org/10.3390/en14248310