DOI QR코드

DOI QR Code

Photoaging protective effects of BIOGF1K, a compound-K-rich fraction prepared from Panax ginseng

  • Hong, Yo Han (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Donghyun (Amorepacific Research and Development Unit) ;
  • Nam, Gibaeg (Amorepacific Research and Development Unit) ;
  • Yoo, Sulgi (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Han, Sang Yun (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Jeong, Seong-Gu (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Eunji (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Jeong, Deok (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Yoon, Keejung (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Sunggyu (Research and Business Foundation, Sungkyunkwan University) ;
  • Park, Junseong (Amorepacific Research and Development Unit) ;
  • Cho, Jae Youl (Department of Genetic Engineering, Sungkyunkwan University)
  • Received : 2016.11.22
  • Accepted : 2017.01.02
  • Published : 2018.01.15

Abstract

Background: BIOGF1K, a compound-K-rich fraction, has been shown to display anti-inflammatory activity. Although Panax ginseng is widely used for the prevention of photoaging events induced by UVB irradiation, the effect of BIOGF1K on photoaging has not yet been examined. In this study, we investigated the effects of BIOGF1K on UVB-induced photoaging events. Methods: We analyzed the ability of BIOGF1K to prevent UVB-induced apoptosis, enhance matrix metalloproteinase (MMP) expression, upregulate anti-inflammatory activity, reduce sirtuin 1 expression, and melanin production using reverse transcription-polymerase chain reaction, melanin content assay, tyrosinase assay, and flow cytometry. We also evaluated the effects of BIOGF1K on the activator protein-1 signaling pathway, which plays an important role in photoaging, by immunoblot analysis and luciferase reporter gene assays. Results: Treatment of UVB-irradiated NIH3T3 fibroblasts with BIOGF1K prevented UVB-induced cell death, inhibited apoptosis, suppressed morphological changes, reduced melanin secretion, restored the levels of type I procollagen and sirtuin 1, and prevented mRNA upregulation of MMP-1, MMP-2, and cyclo-oxygenase-2; these effects all occurred in a dose-dependent manner. In addition, BIOGF1K markedly reduced activator-protein-1-mediated luciferase activity and decreased the activity of mitogen-activated protein kinases (extracellular response kinase, p38, and C-Jun N-terminal kinase). Conclusion: Our results strongly suggest that BIOGF1K has anti-photoaging activity and that BIOGF1K could be used in anti-aging cosmeceutical preparations.

Keywords

References

  1. Asadamongkol B, Zhang JH. The development of hyperbaric oxygen therapy for skin rejuvenation and treatment of photoaging. Med Gas Res 2014;4:1. https://doi.org/10.1186/2045-9912-4-1
  2. Bosch R, Philips N, Suarez-Perez JA, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, Gonzalez S. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants 2015;4:248-68. https://doi.org/10.3390/antiox4020248
  3. Chung KW, Choi YJ, Park MH, Jang EJ, Kim DH, Park BH, Yu BP, Chung HY. Molecular insights into SIRT1 protection against UVB-induced skin fibroblast senescence by suppression of oxidative stress and p53 acetylation. J Gerontol A Biol Sci Med Sci 2014;70:959-68.
  4. Yan Y, Li L, Xu H, Peng S, Qu T, Wang B. Receptor interacting protein 1 involved in ultraviolet B induced NIH3T3 cell apoptosis through expression of matrix metalloproteinases and reactive oxygen species production. Chin Med J 2013;126:4327-33.
  5. Brenneisen P, Sies H, Scharffetter-Kochanek K. Ultraviolet-B irradiation and matrix metalloproteinases. Ann N Y Acad Sci 2002;973:31-43. https://doi.org/10.1111/j.1749-6632.2002.tb04602.x
  6. Ming M, Soltani K, Shea CR, Li X, He YY. Dual role of SIRT1 in UVB-induced skin tumorigenesis. Oncogene 2015;34:357-63. https://doi.org/10.1038/onc.2013.583
  7. Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A, Tamakloe T, Wj Wang, Song X, Wm Chu. SIRT1 confers protection against UVB-and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. J Cell Mol Med 2009;13:3632-43. https://doi.org/10.1111/j.1582-4934.2008.00453.x
  8. Lu J, Guo JH, Tu XL, Zhang C, Zhao M, Zhang QW, Gao FH. Tiron Inhibits UVBinduced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 promoters by MAPK signaling pathway in human dermal fibroblasts. PloS One 2016;11:e0159998. https://doi.org/10.1371/journal.pone.0159998
  9. Lee HJ, Hwang E, Park B, Zhang M, Zw Sun, Lee DG, Park SY, Yi TH. Methanol extract of bitter melon alleviates UVB-induced MMPs expression via MAP kinase and AP-1 signaling in human dermal fibroblasts in vitro. Phytother Res 2016;30:1519-26. https://doi.org/10.1002/ptr.5656
  10. D'Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling pathways in melanogenesis. Int J Mol Sci 2016;17:1144. https://doi.org/10.3390/ijms17071144
  11. Englaro W, Rezzonico R, Durand-Clement M, Lallemand D, Ortonne JP, Ballotti R. Mitogen-activated protein kinase pathway and AP-1 are activated during cAMP-induced melanogenesis in B-16 melanoma cells. J Biol Chem 1995;270:24315-20. https://doi.org/10.1074/jbc.270.41.24315
  12. Kim JH, Baek EJ, Lee EJ, Yeom MH, Park JS, Lee KW, Kang NJ. Ginsenoside F1 attenuates hyperpigmentation in B16F10 melanoma cells by inducing dendrite retraction and activating Rho signalling. Exp Dermatol 2015;24: 150-2. https://doi.org/10.1111/exd.12586
  13. Choi Kt. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol Sin 2008;29:1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  14. Lee HJ, Lee JY, Song KC, Kim JH, Park JH, Chun KH, Hwang GS. Protective effect of processed Panax ginseng, sun ginseng on UVB-irradiated human skin keratinocyte and human dermal fibroblast. J Ginseng Res 2012;36:68-77. https://doi.org/10.5142/jgr.2012.36.1.68
  15. Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, Lee JO, Kim D, Park J, Cho JY. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. J Ginseng Res 2017;41: 43-51. https://doi.org/10.1016/j.jgr.2015.12.009
  16. Hossen MJ, Baek KS, Kim E, Yang WS, Jeong D, Kim JH, Kweon DH, Yoon DH, Kim TW, Kim JH. In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-${\kappa}B$. J Ethnopharmacol 2015;159:9-16. https://doi.org/10.1016/j.jep.2014.10.064
  17. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massague J. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008;451:147-52. https://doi.org/10.1038/nature06487
  18. Ding N, Ruth TY, Subramaniam N, Sherman MH, Wilson C, Rao R, Leblanc M, Coulter S, He M, Scott C. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 2013;153:601-13. https://doi.org/10.1016/j.cell.2013.03.028
  19. Tan SY, Ang CY, Luo Z, Li P, Nguyen KT, Zhao Y. An iGlu receptor antagonist and its simultaneous use with an anticancer drug for cancer therapy. Chemistry 2015;21:6123-31. https://doi.org/10.1002/chem.201406527
  20. Baek KS, Yi YS, Son YJ, Yoo S, Sung NY, Kim Y, Hong S, Aravinthan A, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components. J Ginseng Res 2016;40:437-44. https://doi.org/10.1016/j.jgr.2016.08.003
  21. Yang Y, Yu T, Jang HJ, Byeon SE, Song SY, Lee BH, Rhee MH, Kim TW, Lee J, Hong S. In vitro and in vivo anti-inflammatory activities of Polygonum hydropiper methanol extract. J Ethnopharmacol 2012;139:616-25. https://doi.org/10.1016/j.jep.2011.12.003
  22. Kim MY, Cho JY. 20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages. J Ginseng Res 2013;37:293-9. https://doi.org/10.5142/jgr.2013.37.293
  23. Starkenmann C, Luca L, Niclass Y, Praz E, Roguet D. Comparison of volatile constituents of Persicaria odorata(Lour.) Sojak (Polygonum odoratum Lour.) and Persicaria hydropiper L. Spach (Polygonum hydropiper L.). J Agric Food Chem 2006;54:3067-71. https://doi.org/10.1021/jf0531611
  24. Almela L, Sanchez-Munoz B, Fernandez-Lopez JA, Roca MJ, Rabe V. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J Chromatogr A 2006;1120:221-9. https://doi.org/10.1016/j.chroma.2006.02.056
  25. Cheng Y, Ren X, Zhang Y, Patel R, Sharma A, Wu H, Robertson GP, Yan L, Rubin E, Yang JM. eEF-2 kinase dictates cross-talk between autophagy and apoptosis induced by Akt inhibition, thereby modulating cytotoxicity of novel Akt inhibitor MK-2206. Cancer Res 2011;71:2654-63. https://doi.org/10.1158/0008-5472.CAN-10-2889
  26. Lee HJ, Hyun EA, Yoon WJ, Kim BH, Rhee MH, Kang HK, Cho JY, Yoo ES. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J Ethnopharmacol 2006;103:208-16. https://doi.org/10.1016/j.jep.2005.08.009
  27. Cho MK, Jang YP, Kim YC, Kim SG. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-${\alpha}$ inhibition. Int Immunopharmacol 2004;4: 1419-29. https://doi.org/10.1016/j.intimp.2004.06.011
  28. Kubo I, Nitoda T, Ki Nihei. Effects of quercetin on mushroom tyrosinase and B16-F10 melanoma cells. Molecules 2007;12:1045-56. https://doi.org/10.3390/12051045
  29. Tanos T, Marinissen MJ, Leskow FC, Hochbaum D, Martinetto H, Gutkind JS, Coso OA. Phosphorylation of c-Fos by members of the p38 MAPK family role in the AP-1 response to UV light. J Biol Chem 2005;280:18842-52. https://doi.org/10.1074/jbc.M500620200
  30. Ikehata H, Ono T. The mechanisms of UV mutagenesis. J Radiat Res 2011;52: 115-25. https://doi.org/10.1269/jrr.10175
  31. Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Ponten J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 1991;88:10124-8. https://doi.org/10.1073/pnas.88.22.10124
  32. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B 2001;63:8-18. https://doi.org/10.1016/S1011-1344(01)00198-1
  33. Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev 2002;1:705-20. https://doi.org/10.1016/S1568-1637(02)00024-7
  34. Brown WT. Human mutations affecting aging - a review. Mech Ageing Dev 1979;9:325-36. https://doi.org/10.1016/0047-6374(79)90109-X
  35. Sinha RP, Hader DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 2002;1:705-20.
  36. Guo L, Huang ZX, Chen XW, Deng QK, Yan W, Zhou MJ, Ou CS, Ding ZH. Differential expression profiles of microRNAs in NIH3T3 cells in response to UVB irradiation. Photochem Photobiol 2009;85:765-73. https://doi.org/10.1111/j.1751-1097.2008.00482.x
  37. Jablonski NG, Chaplin G. Chaplin, Human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci U S A 2010;107:8962-8. https://doi.org/10.1073/pnas.0914628107
  38. Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 2002;277:12710-7. https://doi.org/10.1074/jbc.M111598200
  39. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495-516. https://doi.org/10.1080/01926230701320337
  40. Baumann L. How to prevent photoaging? J Invest Dermatol 2005;125:xii-xiii.
  41. Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Woude GFV, Testa JR. Antiapoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 2001;98:247-52. https://doi.org/10.1073/pnas.98.1.247
  42. Matsumura M, Tanaka N, Kuroki T, Ichihashi M, Ohba M. The $\eta$ isoform of protein kinase C inhibits UV-induced activation of caspase-3 in normal human keratinocytes. Biochem Biophys Res Commun 2003;303:350-6. https://doi.org/10.1016/S0006-291X(03)00345-0
  43. Cho S, Kim HH, Lee MJ, Lee S, Park C-S, Nam S-J, Han J-J, Kim J-W, Chung JH. Phosphatidylserine prevents UV-induced decrease of type I procollagen and increase of MMP-1 in dermal fibroblasts and human skin in vivo. J Lipid Res 2008;49:1235-45. https://doi.org/10.1194/jlr.M700581-JLR200
  44. Kang TH, Park HM, Kim YB, Kim H, Kim N, Do JH, Kang C, Cho Y, Kim SY. Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J Ethnopharmacol 2009;123:446-51. https://doi.org/10.1016/j.jep.2009.03.022
  45. Brennan M, Bhatti H, Nerusu KC, Bhagavathula N, Kang S, Fisher GJ, Varani J, Voorhees JJ. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol 2003;78:43-8. https://doi.org/10.1562/0031-8655(2003)078<0043:MMITMC>2.0.CO;2
  46. Jung SK, Lee KW, Kim HY, Oh MH, Byun S, Lim SH, Heo YS, Kang NJ, Bode AM, Dong Z. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf. Biochem Pharmacol 2010;79:1455-61. https://doi.org/10.1016/j.bcp.2010.01.004
  47. Zhu L, Lu Y, Yu WG, Zhao X, Lu YH. Anti-photoageing and anti-melanogenesis activities of chrysin. Pharm Biol 2016:1-9.
  48. Park SY, Shin YK, Kim HT, Kim YM, Lee DG, Hwang E, Cho BG, Yin CS, Kim KY, Yi TH. A single-center, randomized, double-blind, placebo-controlled study on the efficacy and safety of "enzyme-treated red ginseng powder complex (BG11001)" for antiwrinkle and proelasticity in individuals with healthy skin. J Ginseng Res 2016;40:260-8. https://doi.org/10.1016/j.jgr.2015.08.006
  49. Lee DY, Jeong YT, Jeong SC, Lee MK, Min JW, Lee JW, Kim GS, Lee SE, Ahn YS, Kang HC, Kim JH. Melanin biosynthesis inhibition effects of Ginsenoside Rb2 isolated from Panax ginseng Berry. J Microbiol Biotechnol 2015;25:2011-5. https://doi.org/10.4014/jmb.1505.05069
  50. Baek KS, Hong YD, Kim Y, Sung NY, Yang S, Lee KM, Park JY, Park JS, Rho HS, Shin SS, Cho JY. Anti-inflammatory activity of AP-SF, a ginsenoside-enriched fraction, from Korean ginseng. J Ginseng Res 2015;39:155-61. https://doi.org/10.1016/j.jgr.2014.10.004
  51. Li Z, Ryu SW, Lee J, Choi K, Kim S, Choi C. Protopanaxatirol type ginsenoside Re promotes cyclic growth of hair follicles via inhibiting transforming growth factor beta signaling cascades. Biochem Biophys Res Commun 2016;470:924-9. https://doi.org/10.1016/j.bbrc.2016.01.148
  52. Park SH, Seo W, Eun HS, Kim SY, Jo E, Kim MH, Choi WM, Lee JH, Shim YR, Cui CH, Kim SC, Hwang CY, Jeong WI. Protective effects of ginsenoside F2 on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Biochem Biophys Res Commun 2016;478:1713-9. https://doi.org/10.1016/j.bbrc.2016.09.009
  53. Chung I, Lee J, Park YS, Lim Y, Chang DH, Park J, Hwang JS. Inhibitory mechanism of Korean Red Ginseng on GM-CSF expression in UVB-irradiated keratinocytes. J Ginseng Res 2015;39:322-30. https://doi.org/10.1016/j.jgr.2015.03.001
  54. Lee EJ, Kim JY, Oh SH. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci Rep 2016;6:27848. https://doi.org/10.1038/srep27848
  55. Park PJ, Lee TR, Cho EG. Substance P stimulates endothelin 1 secretion via endothelin-converting enzyme 1 and promotes melanogenesis in human melanocytes. J Invest Dermatol 2015;135:551-9. https://doi.org/10.1038/jid.2014.423
  56. Won YK, Lin CB, Seiberg M, Chen N, Hu Y, Rossetti D, Saliou C, Loy CJ. Galvanic zinc-copper microparticles inhibit melanogenesis via multiple pigmentary pathways. Arch Dermatol Res 2014;306:27-35. https://doi.org/10.1007/s00403-013-1369-y
  57. Bode AM, Dong Z. Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE 2003;2003:RE2.

Cited by

  1. An Insight into Ginsenoside Metabolite Compound K as a Potential Tool for Skin Disorder vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/8075870
  2. Skin Protective Effect of Epigallocatechin Gallate vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010173
  3. Oxidative Stress-Protective and Anti-Melanogenic Effects of Loliolide and Ethanol Extract from Fresh Water Green Algae, Prasiola japonica vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092825
  4. Anti-Apoptotic and Anti-Inflammatory Activities of Edible Fresh Water Algae Prasiola japonica in UVB-Irradiated Skin Keratinocytes vol.47, pp.8, 2019, https://doi.org/10.1142/s0192415x19500940
  5. Antioxidative and Antimelanogenesis Effect of Momordica charantia Methanol Extract vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/5091534
  6. Antiphotoaging and Antimelanogenic Effects of Penthorum chinense Pursh Ethanol Extract due to Antioxidant- and Autophagy-Inducing Properties vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/9679731
  7. Loliolide Presents Antiapoptosis and Antiscratching Effects in Human Keratinocytes vol.20, pp.3, 2018, https://doi.org/10.3390/ijms20030651
  8. Naringin prevents ultraviolet‐B radiation‐induced oxidative damage and inflammation through activation of peroxisome proliferator‐activated receptor γ in mouse embryonic fibrob vol.33, pp.3, 2018, https://doi.org/10.1002/jbt.22263
  9. Morinda citrifolia noni water extract enhances innate and adaptive immune responses in healthy mice, ex vivo, and in vitro vol.33, pp.3, 2018, https://doi.org/10.1002/ptr.6256
  10. Anti-Wrinkling and Anti-Melanogenic Effect of Pradosia mutisii Methanol Extract vol.20, pp.5, 2018, https://doi.org/10.3390/ijms20051043
  11. Antioxidant and Cytoprotective Effects of (−)-Epigallocatechin-3-(3″-O-methyl) Gallate vol.20, pp.16, 2018, https://doi.org/10.3390/ijms20163993
  12. Src/NF-κB-Targeted Anti-Inflammatory Effects of Potentilla glabra var. Mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract vol.10, pp.4, 2018, https://doi.org/10.3390/biom10040648
  13. Water Extract of Lotus Leaf Alleviates Dexamethasone-Induced Muscle Atrophy via Regulating Protein Metabolism-Related Pathways in Mice vol.25, pp.20, 2018, https://doi.org/10.3390/molecules25204592
  14. 3-Deazaadenosine, an S-adenosylhomocysteine hydrolase inhibitor, attenuates lipopolysaccharide-induced inflammatory responses via inhibition of AP-1 and NF-κB signaling vol.182, pp.None, 2018, https://doi.org/10.1016/j.bcp.2020.114264
  15. Sauropus brevipes ethanol extract negatively regulates inflammatory responses in vivo and in vitro by targeting Src, Syk and IRAK1 vol.59, pp.1, 2018, https://doi.org/10.1080/13880209.2020.1866024
  16. Anti-inflammatory effect of Barringtonia angusta methanol extract is mediated by targeting of Src in the NF-κB signalling pathway vol.59, pp.1, 2018, https://doi.org/10.1080/13880209.2021.1938613
  17. Complete Bioconversion of Protopanaxadiol-Type Ginsenosides to Compound K by Extracellular Enzymes from the Isolated Strain Aspergillus tubingensis vol.69, pp.1, 2021, https://doi.org/10.1021/acs.jafc.0c07424
  18. In vivo anti-inflammatory effects of Prasiola japonica ethanol extract vol.80, pp.None, 2018, https://doi.org/10.1016/j.jff.2021.104440
  19. The regulatory role of Korean ginseng in skin cells vol.45, pp.3, 2018, https://doi.org/10.1016/j.jgr.2020.08.004
  20. Effects of Carissa carandas Linn. Fruit, Pulp, Leaf, and Seed on Oxidation, Inflammation, Tyrosinase, Matrix Metalloproteinase, Elastase, and Hyaluronidase Inhibition vol.10, pp.9, 2018, https://doi.org/10.3390/antiox10091345
  21. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition vol.7, pp.11, 2018, https://doi.org/10.1016/j.heliyon.2021.e08354
  22. In Vitro Photoprotective, Anti-Inflammatory, Moisturizing, and Antimelanogenic Effects of a Methanolic Extract of Chrysophyllum lucentifolium Cronquist vol.11, pp.1, 2018, https://doi.org/10.3390/plants11010094
  23. Comparative Study of Three Raspberry Cultivar (Rubus idaeus L.) Leaves Metabolites: Metabolome Profiling and Antioxidant Activities vol.12, pp.3, 2022, https://doi.org/10.3390/app12030990