DOI QR코드

DOI QR Code

Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala

  • Choi, Jong Hee (Department of Science in Korean Medicine, Graduate School, Kyung Hee University) ;
  • Lee, Min Jung (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Jang, Minhee (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Kim, Hak-Jae (Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University) ;
  • Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University) ;
  • Lee, Sang Won (Department of Medicinal Crop Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Young Ock (Department of Medicinal Crop Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Cho, Ik-Hyun (Department of Science in Korean Medicine, Graduate School, Kyung Hee University)
  • Received : 2016.09.02
  • Accepted : 2017.04.18
  • Published : 2018.01.15

Abstract

Background: Depression is one of the most commonly diagnosed neuropsychiatric diseases, but the underlying mechanism and medicine are not well-known. Although Panax ginseng has been reported to exert protective effects in various neurological studies, little information is available regarding its antidepressant effects. Methods: Here, we examined the antidepressant effect and underlying mechanism of P. ginseng extract (PGE) in a chronic restraint stress (CRS)-induced depression model in mice. Results: Oral administration of PGE for 14 d decreased immobility (depression-like behaviors) time in forced swim and tail suspended tests after CRS induction, which corresponded with attenuation of the levels of serum adrenocorticotropic hormone and corticosterone, as well as attenuated c-Fos expression in the amygdala. PGE enhanced messenger RNA expression level of brain-derived neurotrophic factor but ameliorated microglial activation and neuroinflammation (the level of messenger RNA and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase) in the amygdala of mice after CRS induction. Interestingly, 14-d treatment with celecoxib, a selective cyclooxygenase-2 inhibitor, and $N_{\omega}$-nitro-L-arginine methyl ester hydrochloride, a selective inducible nitric oxide synthase inhibitor, attenuated depression-like behaviors after CRS induction. Additionally, PGE inhibited the upregulation of the nuclear factor erythroid 2 related factor 2 and heme oxygenase-1 pathways. Conclusion: Taken together, our findings suggest that PGE exerts antidepressant-like effect of CRS-induced depression by antineuroinflammatory and antioxidant (nuclear factor erythroid 2 related factor 2/heme oxygenase-1 activation) activities by inhibiting the hypothalamo-pituitary-adrenal axis mechanism. Further studies are needed to evaluate the potential of components of P. ginseng as an alternative treatment of depression, including clinical trial evaluation.

Keywords

References

  1. Lang UE, Borgwardt S. Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 2013;31:761-77. https://doi.org/10.1159/000350094
  2. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008;455:894-902. https://doi.org/10.1038/nature07455
  3. Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015;144: 365-73. http://dx.doi.org/10.1111/imm.12443.
  4. Henckens MJ, van der Marel K, van der Toorn A, Pillai AG, Fernandez G, Dijkhuizen RM, Joels M. Stress-induced alterations in large-scale functional networks of the rodent brain. Neuroimage 2015;105:312-22. https://doi.org/10.1016/j.neuroimage.2014.10.037
  5. Mitra R, Sapolsky RM. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc Natl Acad Sci U S A 2008;105:5573-8. https://doi.org/10.1073/pnas.0705615105
  6. Holtzheimer 3rd PE, Nemeroff CB. Advances in the treatment of depression. NeuroRx 2006;3:42-56. https://doi.org/10.1016/j.nurx.2005.12.007
  7. Souery D, Papakostas GI, Trivedi MH. Treatment-resistant depression. J Clin Psychiatry 2006;67(Suppl 6):16-22. https://doi.org/10.4088/JCP.1106e16
  8. Vilhardt F, Haslund-Vinding J, Jaquet V, McBean G. Microglia antioxidant systems and redox signaling. Br J Pharmacol 2017;174:1719-32. https://doi.org/10.1111/bph.13426
  9. Yao W, Zhang JC, Ishima T, Dong C, Yang C, Ren Q, Ma M, Han M, Wu J, Suganuma H, et al. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci Rep 2016;6:30659. https://doi.org/10.1038/srep30659
  10. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean Red Ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2016;39:384-91.
  11. Hartley DE, Elsabagh S, File SE. Gincosan (a combination of Ginkgo biloba and Panax ginseng): the effects on mood and cognition of 6 and 12 weeks' treatment in post-menopausal women. Nutr Neurosci 2004;7:325-33. https://doi.org/10.1080/10284150400015557
  12. Kuribara H, Tomioka H, Takahashi R, Onozato K, Murohashi N, Numajiri T, Iwata H, Koya S. An antidepressant effect of Sho-ju-sen, a Japanese herbal medicine, assessed by learned helplessness model in mice. Phytother Res 2004;18:173-6. https://doi.org/10.1002/ptr.1412
  13. Dang H, Sun L, Liu X, Peng B, Wang Q, Jia W, Chen Y, Pan A, Xiao P. Preventive action of Kai Xin San aqueous extract on depressive-like symptoms and cognition deficit induced by chronic mild stress. Exp Biol Med (Maywood) 2009;234:785-93. https://doi.org/10.3181/0812-RM-354
  14. Yamada N, Araki H, Yoshimura H. Identification of antidepressant-like ingredients in ginseng root (Panax ginseng C.A. Meyer) using a menopausal depressive-like state in female mice: participation of 5-HT2A receptors. Psychopharmacology (Berl) 2011;216:589-99. https://doi.org/10.1007/s00213-011-2252-1
  15. Liu Z, Qi Y, Cheng Z, Zhu X, Fan C, Yu SY. The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats. Neuroscience 2016;322: 358-69. https://doi.org/10.1016/j.neuroscience.2016.02.050
  16. Zheng X, Liang Y, Kang A, Ma SJ, Xing L, Zhou YY, Dai C, Xie H, Xie L, Wang GJ, et al. Peripheral immunomodulation with ginsenoside Rg1 ameliorates neuroinflammation-induced behavioral deficits in rats. Neuroscience 2014;256:210-22. https://doi.org/10.1016/j.neuroscience.2013.10.023
  17. Cui J, Jiang L, Xiang H. Ginsenoside Rb3 exerts antidepressant-like effects in several animal models. J Psychopharmacol 2012;26:697-713. https://doi.org/10.1177/0269881111415735
  18. Xu C, Teng J, Chen W, Ge Q, Yang Z, Yu C, Yang Z, Jia W. 20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:1402-11. https://doi.org/10.1016/j.pnpbp.2010.07.010
  19. Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342-53. https://doi.org/10.5142/jgr.2012.36.4.342
  20. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012;490:187-91. https://doi.org/10.1038/nature11556
  21. Kim KS, Han PL. Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. J Neurosci Res 2006;83:497-507. https://doi.org/10.1002/jnr.20754
  22. Jang M, Cho IH. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-kappaB pathways. Mol Neurobiol 2016;53:2619-35. https://doi.org/10.1007/s12035-015-9230-2
  23. Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, et al. Korean Red Ginseng and ginsenoside-Rb1/-Rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol 2016;53:1977-2002. https://doi.org/10.1007/s12035-015-9131-4
  24. Choi JH, Lee MJ, Jang M, Kim EJ, Shim I, Kim HJ, Lee S, Lee SW, Kim YO, Cho IH. An oriental medicine, Hyungbangpaedok-San attenuates motor paralysis in an experimental model of multiple sclerosis by regulating the T cell response. PLoS One 2015;10:e0138592. https://doi.org/10.1371/journal.pone.0138592
  25. Marin MT, Cruz FC, Planeta CS. Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats. Physiol Behav 2007;90:29-35. https://doi.org/10.1016/j.physbeh.2006.08.021
  26. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977;229:327-36.
  27. Dallman MF, Akana SF, Strack AM, Scribner KS, Pecoraro N, La Fleur SE, Houshyar H, Gomez F. Chronic stress-induced effects of corticosterone on brain: direct and indirect. Ann N Y Acad Sci 2004;1018:141-50. https://doi.org/10.1196/annals.1296.017
  28. Jacobsen JP, Mork A. Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain Res 2006;1110:221-5. https://doi.org/10.1016/j.brainres.2006.06.077
  29. Lipsky RH, Marini AM. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann N Y Acad Sci 2007;1122:130-43. https://doi.org/10.1196/annals.1403.009
  30. Rial D, Lemos C, Pinheiro H, Duarte JM, Goncalves FQ, Real JI, Prediger RD, Goncalves N, Gomes CA, Canas PM, et al. Depression as a glial-based synaptic dysfunction. Front Cell Neurosci 2016;9:521.
  31. Vavakova M, Durackova Z, Trebaticka J. Markers of oxidative stress and neuroprogression in depression disorder. Oxid Med Cell Longev 2015;2015, 898393.
  32. Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol Bull 2014;140:774-815. https://doi.org/10.1037/a0035302
  33. Anacker C. Fresh approaches to antidepressant drug discovery. Expert Opin Drug Discov 2014;9:407-21. https://doi.org/10.1517/17460441.2014.892071
  34. liu S, Li T, Liu H, Wang X, Bo S, Xie Y, Bai X, Wu L, Wang Z, Liu D. Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex. Behav Brain Res 2016;302:191-9. https://doi.org/10.1016/j.bbr.2016.01.037
  35. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci 2008;31:464-8. https://doi.org/10.1016/j.tins.2008.06.006
  36. Varghese FP, Brown ES. The hypothalamic-pituitary-adrenal axis in major depressive disorder: a brief primer for primary care physicians. Prim Care Companion J Clin Psychiatry 2001;3:151-5. https://doi.org/10.4088/PCC.v03n0401
  37. Kim DH, Moon YS, Jung JS, Min SK, Son BK, Suh HW, Song DK. Effects of ginseng saponin administered intraperitoneally on the hypothalamopituitary-adrenal axis in mice. Neurosci Lett 2003;343:62-6. https://doi.org/10.1016/S0304-3940(03)00300-8
  38. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci 2015;38:637-58. https://doi.org/10.1016/j.tins.2015.08.001
  39. Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 2014;19:699-709. https://doi.org/10.1038/mp.2013.155
  40. Mahmoud R,Wainwright SR, Chaiton JA, Lieblich SE,Galea LA.Ovarian hormones, but not fluoxetine, impart resilience within a chronic unpredictable stress model in middle-aged female rats. Neuropharmacology 2016;107:278-93. https://doi.org/10.1016/j.neuropharm.2016.01.033
  41. Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, Krogh J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 2014;71:1381-91. https://doi.org/10.1001/jamapsychiatry.2014.1611
  42. Eyre HA, Air T, Proctor S, Rositano S, Baune BT. A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Prog Neuropsychopharmacol Biol Psychiatry 2015;57:11-6. https://doi.org/10.1016/j.pnpbp.2014.10.003
  43. Lee SY, Lee SJ, Han C, Patkar AA, Masand PS, Pae CU. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2013;46:224-35. https://doi.org/10.1016/j.pnpbp.2012.09.008
  44. Maes M, Fisar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates-Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 2012;20:127-50. https://doi.org/10.1007/s10787-011-0111-7
  45. Patricio P, Mateus-Pinheiro A, Irmler M, Alves ND, Machado-Santos AR, Morais M, Correia JS, Korostynski M, Piechota M, Stoffel R, et al. Differential and converging molecular mechanisms of antidepressants' action in the hippocampal dentate gyrus. Neuropsychopharmacology 2015;40:338-49. https://doi.org/10.1038/npp.2014.176
  46. Martin-de-Saavedra MD, Budni J, Cunha MP, Gomez-Rangel V, Lorrio S, Del Barrio L, Lastres-Becker I, Parada E, Tordera RM, Rodrigues AL. Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology 2013;38:2010-22. https://doi.org/10.1016/j.psyneuen.2013.03.020
  47. Du X, Xu H, Jiang H, Xie J. Akt/Nrf2 activated upregulation of heme oxygenase-1 involves in the role of Rg1 against ferrous iron-induced neurotoxicity in SKN-SH cells. Neurotox Res 2013;24:71-9. https://doi.org/10.1007/s12640-012-9362-3
  48. Meng X, Sun G, Ye J, Xu H, Wang H, Sun X. Notoginsenoside R1-mediated neuroprotection involves estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways: a novel mechanism of Nrf2/ARE signaling activation. Free Radic Res 2014;48:445-60. https://doi.org/10.3109/10715762.2014.885117
  49. Gao Y, Chu SF, Li JP, Zhang Z, Yan JQ,Wen ZL,Xia CY,Mou Z,Wang ZZ,HeWB, et al. Protopanaxtriolprotects against 3-nitropropionic acid-inducedoxidativestress in a rat model of Huntington's disease. Acta Pharmacol Sin 2015;36:311-22. https://doi.org/10.1038/aps.2014.107
  50. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 2013;1:45-9. https://doi.org/10.1016/j.redox.2012.10.001
  51. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol Lett 2008;29(3):287-91.
  52. Castren E. Neurotrophins and psychiatric disorders. Handb Exp Pharmacol 2014;220:461-79.
  53. Dang H, Chen Y, Liu X,Wang Q,Wang L, Jia W,Wang Y. Antidepressant effects of ginseng total saponins inthe forcedswimmingtest andchronicmild stressmodels of depression. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:1417-24. https://doi.org/10.1016/j.pnpbp.2009.07.020
  54. Qi D, Ouyang C, Wang Y, Zhang S, Ma X, Song Y, Yu H, Tang J, Fu W, Sheng L, et al. HO-1 attenuates hippocampal neurons injury via the activation of BDNFTrkB-PI3K/Akt signaling pathway in stroke. Brain Res 2014;1577:69-76. https://doi.org/10.1016/j.brainres.2014.06.031

Cited by

  1. Ninjinyoeito Improves Behavioral Abnormalities and Hippocampal Neurogenesis in the Corticosterone Model of Depression vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.01216
  2. Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-κB Pathways and Activation of Keap1-Nrf2 Pathway vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.01444
  3. Mechanisms of Panax ginseng action as an antidepressant vol.52, pp.6, 2019, https://doi.org/10.1111/cpr.12696
  4. Screening inducers of neuronal BDNF gene transcription using primary cortical cell cultures from BDNF-luciferase transgenic mice vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-48361-4
  5. Botanicals as modulators of depression and mechanisms involved vol.14, pp.None, 2019, https://doi.org/10.1186/s13020-019-0246-9
  6. Effectiveness and Safety of Panax ginseng Extract on Hepatic Dysfunction: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/2689565
  7. Effects of Ginseng on Neurological Disorders vol.14, pp.None, 2018, https://doi.org/10.3389/fncel.2020.00055
  8. Valeriana fauriei Exerts Antidepressant-Like Effects Through Anti-inflammatory and Antioxidant Activities by Inhibiting Brain-Derived Neurotrophic Factor Associated with Chronic Restraint Stress vol.23, pp.3, 2020, https://doi.org/10.1089/rej.2018.2157
  9. Antidepressant effects of ginsenoside Rf on behavioral change in the glial degeneration model of depression by reversing glial loss vol.44, pp.4, 2020, https://doi.org/10.1016/j.jgr.2019.08.005
  10. Radix Polygalae extract exerts antidepressant effects in behavioral despair mice and chronic restraint stress-induced rats probably by promoting autophagy and inhibiting neuroinflammation vol.265, pp.None, 2018, https://doi.org/10.1016/j.jep.2020.113317
  11. 국내 한의학 학술지에 발표된 항염증 한약재 및 한약처방 연구동향 - 2015년 이후 발표된 실험논문을 중심으로 - vol.36, pp.1, 2018, https://doi.org/10.6116/kjh.2021.36.1.19.
  12. Ginsenoside Re protects against chronic restraint stress‐induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice vol.35, pp.5, 2018, https://doi.org/10.1002/ptr.6947
  13. The effect of ginsenosides on depression in preclinical studies: A systematic review and meta-analysis vol.45, pp.3, 2018, https://doi.org/10.1016/j.jgr.2020.08.006
  14. Medicinal Plants in the Treatment of Depression: Evidence from Preclinical Studies vol.87, pp.9, 2018, https://doi.org/10.1055/a-1338-1011