DOI QR코드

DOI QR Code

Effect of Li-Incorporation on the Properties of ZnO Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method

초음파 분무 열분해법에 의해 성장된 ZnO 박막의 특성에 미치는 Li 첨가의 영향

  • Han, In Sub (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 한인섭 (서울과학기술대학교 신소재공학과) ;
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Received : 2017.12.19
  • Accepted : 2017.12.26
  • Published : 2018.02.27

Abstract

Li-incorporated ZnO thin films were deposited by using ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of Li-incorporation on the performance of ZnO thin films, the structural, electrical, and optical properites of the ZnO thin films were analyzed by means of X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), Hall effect measurement, and UV-Vis spectrophotometry with variation of the Li concentraion in the ZnO sources. Without incorporation of Li element, the ZnO surface showed large spiral domains. As the Li content increases, the size of spiral domains decreased gradually, and finally formed mixed small grain and one-dimensional nanorod-like structures on the surface. This morphological evolution was explained based on an anti-surfactant effect of Li atoms on the ZnO growth surface. In addition, the Li-incorporation changed the optical and electrical properties of the ZnO thin films by modifying the crystalline defect structures by doping effects.

Keywords

References

  1. D. K. Cheon, K. J. Ahn and W. Lee, Korean J. Mater. Res., 27, 69 (2017). https://doi.org/10.3740/MRSK.2017.27.2.69
  2. J. H. Lee, S. J. Heo, J. I. Youn, Y. J. Kim, I. K. Kim, K. W. Jang and H. J. Oh, Korean J. Mater. Res., 27, 669 (2017).
  3. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, Ma. Reshchikov, S. Do an, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys., 98, 11 (2005).
  4. C. Klingshirn, Phys. Status Solidi B, 244, 3027 (2007). https://doi.org/10.1002/pssb.200743072
  5. I. K. Park, J. Ceram. Process. Res., 18, 671 (2017).
  6. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta and H. K. Cho, J. Appl. Phys., 105, 13502 (2009).
  7. S. Yun, J. Lee, J. Yang and S. Lim, Phys. B, 405, 413 (2010). https://doi.org/10.1016/j.physb.2009.08.297
  8. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang and S. Q. Feng, Appl. Phys. Lett., 78, 407 (2001). https://doi.org/10.1063/1.1342050
  9. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren and P. H. Fleming, Appl. Phys. Lett., 81, 3046 (2002). https://doi.org/10.1063/1.1512829
  10. N. Rashidi, V. L. Kuznetsov, J. R. Dilworth, M. Pepper, P. J. Dobson and P. P. Edwards, J. Mater. Chem. C, 1, 6960 (2013). https://doi.org/10.1039/c3tc31129e
  11. I. S. Han and I. K. Park, Korean J. Mater. Res., 27, 609(2017).
  12. D. Y. Shin, J. W. Beav, B. R. Koo and H. J. Ahn, Korean J. Mater. Res., 27, 390 (2017). https://doi.org/10.3740/MRSK.2017.27.7.390
  13. I. S. Han and I. K. Park, Korean J. Mater. Res., 27, 403(2017). https://doi.org/10.3740/MRSK.2017.27.8.403
  14. A. Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. K. Tang, G. K. L. Wong and Y. Segawa, Mater. Sci. Eng. B, 54, 24 (1998).
  15. S. Tanaka, I. Suemune, P. Ramvall and Y. Aoyagi, Phys. Status Solidi B, 216, 431 (1999). https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<431::AID-PSSB431>3.0.CO;2-3
  16. M. Ardyanian and N. Sedigh, Bull. Mater. Sci., 37, 1309(2014). https://doi.org/10.1007/s12034-014-0076-4
  17. A. Sigel, H. Sigel and R. K. O. Sigel, The Alkali Metal Ions: Their Role for Life, p. 559, D. M. de Freitas, B. D. Leverson and J. L. Goossens, Springer, Switzerland (2016).
  18. S. U. Awan, S. K. Hasanain, G. Hassnain Jaffari, D. H. Anjum and U. S. Qurashi, J. Appl. Phys., 116, 83510 (2014). https://doi.org/10.1063/1.4894153
  19. A. B. Djurisic and Y. H. Leung, Small, 2, 944 (2006). https://doi.org/10.1002/smll.200600134
  20. A. Janotti and C. G. Van de Walle, Phys. Rev. B, 76, 165202 (2007). https://doi.org/10.1103/PhysRevB.76.165202
  21. T. M. Borseth, B. G. Svensson, A. Y. Kuznetsov, P. Klason, Q. X. Zhao and M. Willander, Appl. Phys. Lett., 89, 262112 (2006).
  22. M. D. McCluskey and S. J. Jokela, J. Appl. Phys., 106, 10 (2009).
  23. P. Ruankham, T. Sagawa, H. Sakaguchi and S. Yoshikawa, J. Mater. Chem., 21, 9710 (2011). https://doi.org/10.1039/c0jm04452k
  24. C. Rauch, W. Gehlhoff, M.R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh, A. Hoffmann, S. Polarz and Y. Aksu, J. Appl. Phys., 107, 24311 (2010). https://doi.org/10.1063/1.3275889
  25. J. C. Tauc, Optical Properties of Solids, North-Holland, Amsterdam, (1972).