DOI QR코드

DOI QR Code

Removal of Interface State Density of SiO2/Si Structure by Nitric Acid Oxidation Method

질산산화법을 이용한 SiO2/Si 구조의 계면결함 제거

  • Choi, Jaeyoung (Department of Energy Engineering, Dankook University) ;
  • Kim, Doyeon (Department of Energy Engineering, Dankook University) ;
  • Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
  • 최재영 (단국대학교 에너지공학과) ;
  • 김도연 (단국대학교 에너지공학과) ;
  • 김우병 (단국대학교 에너지공학과)
  • Received : 2017.12.06
  • Accepted : 2018.01.09
  • Published : 2018.02.27

Abstract

5 nm-thick $SiO_2$ layers formed by plasma-enhanced chemical vapor deposition (PECVD) are densified to improve the electrical and interface properties by using nitric acid oxidation of Si (NAOS) method at a low temperature of $121^{\circ}C$. The physical and electrical properties are clearly investigated according to NAOS times and post-metallization annealing (PMA) at $250^{\circ}C$ for 10 min in 5 vol% hydrogen atmosphere. The leakage current density is significantly decreased about three orders of magnitude from $3.110{\times}10^{-5}A/cm^2$ after NAOS 5 hours with PMA treatment, although the $SiO_2$ layers are not changed. These dramatically decreases of leakage current density are resulted from improvement of the interface properties. Concentration of suboxide species ($Si^{1+}$, $Si^{2+}$ and $Si^{3+}$) in $SiO_x$ transition layers as well as the interface state density ($D_{it}$) in $SiO_2/Si$ interface region are critically decreased about 1/3 and one order of magnitude, respectively. The decrease in leakage current density is attributed to improvement of interface properties though chemical method of NAOS with PMA treatment which can perform the oxidation and remove the OH species and dangling bond.

Keywords

References

  1. S. E. Thompson and S. Parthasarathy, Mater. Today, 9, 20 (2006).
  2. B. E. Deal and A. S. Grove, J. Appl. Phys., 36, 3770(1965). https://doi.org/10.1063/1.1713945
  3. J. E. Crowell, L. L. Tedder, H. C. Cho, F. M. Cascarano and M. A. Logan, J. Electron. Spectrosc. Relat. Phenom., 54, 1097 (1990).
  4. K. H. A. Bogart, N. F. Dalleska, G. R. Bogart and E. R. Fisher, J. Vac. Sci. Technol. A, 13, 476 (1995). https://doi.org/10.1116/1.579382
  5. S. V. Hattangady, R. G. Alley, G. G. Fountain, R. J. Markunas, G. Lucovsky and D. Temple, J. Appl. Phys., 73, 7635 (1993). https://doi.org/10.1063/1.353961
  6. D. L. Smith and A. S. Alimonda, J. Electrochem. Soc., 140, 1496 (1993).
  7. S. W. Hsieh, C. Y. Chang and S. C. Hus, J. Appl. Phys. 74, 2636 (1993).
  8. H. Kobayashi, Asuha, O. Maida, M. Takahashi and H. Iwasa, J. Appl. Phys., 94, 7328 (2003). https://doi.org/10.1063/1.1621720
  9. Asuha, M. Takahashi and H. Kobayashi, Appl. Phys. Lett., 85, 3783 (2004). https://doi.org/10.1063/1.1804255
  10. S. S. Im, M. Tanaka, S. Imai, M. Takahashi and H. Kobayashi, Surf. Sci., 600, 2523 (2006). https://doi.org/10.1016/j.susc.2006.04.015
  11. Asuha, T. Kobayashi, O. Maida, M. Inoue, M. Takahashi, Y. Todokoro and H. Kobayashi, Appl. Phys. Lett., 81, 3410 (2002). https://doi.org/10.1063/1.1517723
  12. T. Kobayashi, M. Takahashi, H. Iwasa and H. Kobayashi, Surf. Sci., 547, 275 (2003). https://doi.org/10.1016/j.susc.2003.09.016
  13. J. Choi, S. Joo, T. J. Park and W. B. Kim, Appl. Surf. Sci., 413, 92 (2017). https://doi.org/10.1016/j.apsusc.2017.03.292
  14. M. T. Duffy and W. Kern, RCA Rev., 31, 742 (1970).
  15. M. F. Hochella and A. H. Carim, Surf. Sci., 197, L260(1988). https://doi.org/10.1016/0039-6028(88)90625-5
  16. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 2nd ed., p. 380, John Wiley & Sons, USA (1981).
  17. P. J. Grunthaner, M. H. Hecht, F. J. Grunthaner and N. M. Johnson, J. Appl. Phys., 61, 629 (1987). https://doi.org/10.1063/1.338215
  18. F. Rochet, C. Poncey, G. Dufour, H. Roulet, C. Guillot and F. Sirotti, J. Non-Cryst. Solids, 216, 148 (1997). https://doi.org/10.1016/S0022-3093(97)00181-6
  19. F. J. Grunthaner and P. J. Grunthaner, Mat. Sci. Rep., 1, 65 (1986). https://doi.org/10.1016/S0920-2307(86)80001-9
  20. E. H. Nicollian and A. Goetzberger, Bell Sys. Tech. J., 46, 1055 (1967).
  21. K. Fukuda, S. Suzuki, T. Tanaka and K. Arai, Appl. Phys. Lett., 76, 1585 (2000). https://doi.org/10.1063/1.126103
  22. L. M. Terman, Solid-State Elec., 5, 285 (1962). https://doi.org/10.1016/0038-1101(62)90111-9
  23. F. Werner, B. Veith, D. Zielke, L. Kuhnemund, C. Tegenkamp and J. Schmidt, J. Appl. Phys., 109, 113701 (2011). https://doi.org/10.1063/1.3587227

Cited by

  1. /Si Heterojunction vol.29, pp.7, 2019, https://doi.org/10.1002/adfm.201807271