DOI QR코드

DOI QR Code

Modulating the Properties of Metal-Sensing Whole-Cell Bioreporters by Interfering with Escherichia coli Metal Homeostasis

  • Yoon, Youngdae (Department of Environmental Health Science, Konkuk University) ;
  • Kang, Yerin (Department of Environmental Health Science, Konkuk University) ;
  • Lee, Woonwoo (Department of Environmental Health Science, Konkuk University) ;
  • Oh, Ki-Cheol (Nakdong River Basin Environmental Office) ;
  • Jang, Geupil (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Bong-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • Received : 2017.10.16
  • Accepted : 2017.11.27
  • Published : 2018.02.28

Abstract

In Escherichia coli, the transcription of genes related to metal homeostasis is activated by the presence of target metals. The promoter regions of those genes can be fused with reporter genes to generate whole-cell bioreporters (WCBs); these organisms sense the presence of target metals through reporter gene expression. However, the limited number of available promoters for sensing domains restricts the number of WCB targets. In this study, we have demonstrated an alternative method to generate novel WCBs, based on the notion that since the sensing mechanisms of WCBs are related to metal transportation systems, their properties can be modulated by disrupting metal homeostasis. Mutant E. coli strains were generated by deleting the znt-operon genes zntA, which encodes a zinc-export protein, and zntR, which encodes a znt-operon regulatory protein, to investigate the effects on the metal-sensing properties of WCBs. Deletion of zntA increased the sensitivity but abolished the selectivity of cadmium-sensing WCBs, whereas arsenic-sensing WCBs gained sensitivity toward cadmium. When zntR was deleted, cadmium-sensing WCBs lost the ability to detect cadmium, and this was recovered by introducing exogenous zntR. In addition, the metal-binding site of ZntR was genetically engineered to modulate metal selectivity. This study provides a valuable platform for the development of novel E. coli-based WCBs.

Keywords

References

  1. van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, et al. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142: 1127-1147.
  2. Clemens S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475-486. https://doi.org/10.1007/s004250000458
  3. Canovas D, Cases I, De Lorenzo V. 2003. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5: 1242-1256. https://doi.org/10.1111/j.1462-2920.2003.00463.x
  4. Silver S. 1996. Bacterial resistances to toxic metal ions - a review. Gene 179: 9-19. https://doi.org/10.1016/S0378-1119(96)00323-X
  5. Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Paulus MJ, et al. 1998. Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol. 16: 332-338. https://doi.org/10.1016/S0167-7799(98)01199-8
  6. Hynninen A, Virta M. 2009. Whole-cell bioreporters for the detection of bioavailable metals, pp. 31-63. In Belkin S, Gu MB (eds.). Whole Cell Sensing System II. Springer, Berlin, Germany.
  7. Xu T, Close DM, Sayler GS, Ripp S. 2013. Genetically modified whole-cell bioreporters for environmental assessment. Ecol. Indic. 28: 125-141. https://doi.org/10.1016/j.ecolind.2012.01.020
  8. Belkin S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6: 206-212. https://doi.org/10.1016/S1369-5274(03)00059-6
  9. Harms H, Wells MC, van der Meer JR. 2006. Whole-cell living biosensors - are they ready for environmental application? Appl. Microbiol. Biotechnol. 70: 273-280. https://doi.org/10.1007/s00253-006-0319-4
  10. Park M-J, Sheng R, Silkov A, Jung D-J, Wang Z-G, Xin Y, et al. 2016. SH2 domains serve as lipid-binding modules for pTyrsignaling proteins. Mol. Cell 62: 7-20. https://doi.org/10.1016/j.molcel.2016.01.027
  11. Yoon Y, Kim S, Chae Y, Jeong S-W, An Y-J. 2016. Evaluation of bioavailable arsenic and remediation performance using a whole-cell bioreporter. Sci. Total Environ. 547: 125-131. https://doi.org/10.1016/j.scitotenv.2015.12.141
  12. Yoon Y, Kim S, Chae Y, Kang Y, Lee Y, Jeong S-W, et al. 2016. Use of tunable whole-cell bioreporters to assess bioavailable cadmium and remediation performance in soils. PLoS One 11: e0154506. https://doi.org/10.1371/journal.pone.0154506
  13. Close DM, Ripp S, Sayler GS. 2009. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors 9: 9147-9174. https://doi.org/10.3390/s91109147
  14. Hynninen A, Tõnismann K, Virta M. 2010. Improving the sensitivity of bacterial bioreporters for heavy metals. Bioeng. Bugs 1: 132-138. https://doi.org/10.4161/bbug.1.2.10902
  15. Yoon Y, Kang Y, Chae Y, Kim S, Lee Y, Jeong S-W, et al. 2016. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters. Environ. Sci. Pollut. Res. 23: 2353-2361.
  16. Takahashi H, Oshima T, Hobman JL, Doherty N, Clayton SR, Iqbal M, et al. 2015. The dynamic balance of import and export of zinc in Escherichia coli suggests a heterogeneous population response to stress. J. R. Soc. Interface 12: 20150069. https://doi.org/10.1098/rsif.2015.0069
  17. Choi S-H, Lee K-L, Shin J-H, Cho Y-B, Cha S-S, Roe J-H. 2017. Zinc-dependent regulation of zinc import and export genes by Zur. Nat. Commun. 8: 15812.
  18. Capdevila DA, Wang J, Giedroc DP. 2016. Bacterial strategies to maintain zinc metallostasis at the host-pathogen interface. J. Biol. Chem. 291: 20858-20868. https://doi.org/10.1074/jbc.R116.742023
  19. Duprey A, Chansavang V, Fremion F, Gonthier C, Louis Y, Lejeune P, et al. 2014. "NiCo Buster": engineering E. coli for fast and efficient capture of cobalt and nickel. J. Biol. Eng. 8: 19.
  20. Remy L, Carriere M, Derre-Bobillot A, Martini C, Sanguinetti M, Borezee-Durant E. 2013. The Staphylococcus aureus Opp1 ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Mol. Microbiol. 87: 730-743. https://doi.org/10.1111/mmi.12126
  21. Wang D, Hosteen O, Fierke CA. 2012. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J. Inorg. Biochem. 111: 173-181. https://doi.org/10.1016/j.jinorgbio.2012.02.008
  22. Yamamoto K, Ishihama A. 2005. Transcriptional response of Escherichia coli to external zinc. J. Bacteriol. 187: 6333-6340. https://doi.org/10.1128/JB.187.18.6333-6340.2005
  23. Mitra B, Sharma R. 2001. The cysteine-rich amino-terminal domain of ZntA, a Pb (II)/Zn (II)/Cd (II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 40: 7694-7699.
  24. Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, et al. 1999. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31: 893-902. https://doi.org/10.1046/j.1365-2958.1999.01229.x
  25. Helbig K, Grosse C, Nies DH. 2008. Cadmium toxicity in glutathione mutants of Escherichia coli. J. Bacteriol. 190: 5439-5454. https://doi.org/10.1128/JB.00272-08
  26. Changela A, Chen K, Xue Y, Holschen J, Outten CE, O'Halloran TV, et al. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383-1387. https://doi.org/10.1126/science.1085950
  27. Ibanez MM, Checa SK, Soncini FC. 2015. A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family. J. Bacteriol. 197: 1606-1613.

Cited by

  1. Modulating the sensing properties of Escherichia coli-based bioreporters for cadmium and mercury vol.102, pp.11, 2018, https://doi.org/10.1007/s00253-018-8960-2
  2. A Biosensor Platform for Metal Detection Based on Enhanced Green Fluorescent Protein vol.19, pp.8, 2019, https://doi.org/10.3390/s19081846
  3. Heavy metal(loid) biosensor based on split-enhanced green fluorescent protein: development and characterization vol.103, pp.15, 2018, https://doi.org/10.1007/s00253-019-09908-7
  4. Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors vol.29, pp.10, 2018, https://doi.org/10.4014/jmb.1908.08002
  5. Specific heavy metal/metalloid sensors: current state and perspectives vol.104, pp.3, 2020, https://doi.org/10.1007/s00253-019-10261-y
  6. Antimony sensing whole-cell bioreporters derived from ArsR genetic engineering vol.104, pp.6, 2018, https://doi.org/10.1007/s00253-020-10413-5
  7. Modulation of the Metal(loid) Specificity of Whole-Cell Bioreporters by Genetic Engineering of ZntR Metal-Binding Loops vol.30, pp.5, 2018, https://doi.org/10.4014/jmb.1911.11053
  8. Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories vol.6, pp.3, 2018, https://doi.org/10.1021/acssensors.0c02204
  9. Derivation of pb(II)-sensing Escherichia coli cell-based biosensors from arsenic responsive genetic systems vol.11, pp.1, 2018, https://doi.org/10.1186/s13568-021-01329-y