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1. Introduction

Sampling technique is used to estimate uncertainty inherent in po-

pulation. As the type of probability distribution of population is unk-

nown in most sociology and engineering problems, the expectation of 

random variable or the occurrence probability of subset can be directly 

calculated through sampling. Also, in a case where the type of proba-

bility distribution of population is known or properly assumable, it is 

possible to calculate the occurrence probability of subset based on the 

distribution parameters of population estimated through sampling.

It is often difficult to define the probability distribution of inputs en-

tered in a system to define problems in sociology and engineering. 

Even if the inputs are fortunately known as normal distribution, the 

outputs produced by a system may have other types of distribution than 

normal distribution if the correlation between random variables is non-

linear or the system itself has a nonlinear feature. Nevertheless, in pro-

babilistic design for nuclear power plants associated to ASCE 43 [2], 

the probability distribution of outputs produced by the system is pro-

perly assumed in order to increase the efficiency in calculation through 

an allowance for some degree of error [1].

To estimate the mentioned uncertainties, one can use well known tech-

niques such as 1) Random Sampling [3, 4], 2) Importance Sampling 

[5], and 3) Latin Hypercube Sampling [6]. As Random Sampling (RS) uses 

samples selected randomly among population, it has a disadvantage of 

a lengthy calculation time because a large number of samples are re-

quired especially in a case where a probability to be calculated is located 

in the tail of probability distribution. When there is a need to calculate 

the probability in the tail, Importance Sampling is a method for selec-

ting, randomly in the tail area, a far smaller sample than RS. Latin Hy-

percube Sampling (LHS) is a method for dividing the whole interval of 

random variables into several intervals with the same probability area 

and for selecting samples from each interval. LHS can estimate the 

probability distribution approximately using a far smaller sample than 

RS, and is effective in estimating the distribution parameters in a case 

where the type of the probability distribution of random variable is 

known or properly assumable. For this reason, LHS is preferred in pro-

babilistic structural design for an efficient calculation [1].
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This study proposes extension of LHS to avoid the necessity of 

using intervals with the same probability area. In a case where intervals 

with different probability areas are used, it is necessary to make a cor-

rection using proper weight function. This method is called Weighted 

Latin Hypercube Sampling (WLHS). This study establishes equations 

necessary to apply weight function to WLHS, and verifies WLHS th-

rough numerical examples.

The proposed WLHS is also applied to seismically isolated structures 

in nuclear power plants. Huang et al. [1] considered the uncertainties 

using LHS for a study on seismic performance evaluation of seismi-

cally isolated structures in NPPs. The same numerical example as 

Huang et al. [1] is used in this paper with the site-specific ground mo-

tions of the nuclear power plant in Diablo Canyon, which is western 

region in the USA. In this application, clearance-to-stops (CSs) cal-

culated using LHS proposed by Huang et al. [1] and WLHS proposed in 

this paper, respectively, are compared to investigate the effect of choo-

sing different sampling techniques.

2. Weighted Latin Hypercube Sampling (WLHS)

In order to see how to extend LHS to propose WLHS, it is helpful for 

us to review on LHS. Based on this review, weight function and dis-

tribution parameters can be defined in a reasonable way.

2.1 Latin Hypercube Sampling (LHS)

If the number of samples is the same as that of population, an exact 

probability distribution can be found. However, in real situation, pro-

bability distribution can be estimated using samples far smaller than 

population in quantity. In Latin Hypercube Sampling, the total proba-

bility area created between probability density function and horizontal 

axis (random variable axis) is divided into n intervals with the same areas, 

and n samples are created through a random selection within each inter-

val or a selection of the probability-area center in each interval. The pro-

bability-area center refers to the value of random variables at the center 

of probability area in each interval.

If the population of random variable  follows normal distribution, 

sample mean  and unbiased sample variance 

 can be estimated as 

follows, based on samples selected using LHS. The well-known deri-

vation of these equation is shown in Appendix as a reference.
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Using sample mean and sample variance calculated by these equa-

tions, the mean and variance of population can be approximately esti-

mated. Furthermore, using these calculated distribution parameters, 

the normal probability distribution of population can be approximated.

If Y has log-normal distribution, ‘X ln’ follows normal distribution, 

and  , which is the sample mean of X, is defined as follows:

 ln
 ln

 ⋯  ln





  



ln (3)

where   refers to a sample selected from the ith interval of log-normal 

distribution, and   is the sample median of the log-normal distribution. 

The Equations above can be rewritten for   as follows:

 exp


  



ln (4)

The sample lognormal variance of , 

, is the same as the sample 

variance of ln,  lnY
2 so that it can be defined as follows:



= lnY

2=




  



ln
 ln (5)

2.2 Weighted Latin Hypercube Sampling (WLHS)

In the afore-mentioned Latin Hypercube Sampling, each interval is 

set so that probability area of each interval is the same, and one sample 

is selected from each interval. However, this method of setting the 

sample intervals need to have more flexible way because of the fol-

lowing two reasons. First, sample data may not exist in an interval set 

by LHS in a case where the samples are collected from the un-con-

trolled observations. Second, there is possibility that a sample interval 

can be optimized to accurately estimate the probability distribution of 

population using a smaller number of samples than LHS.

2.2.1 Weight function for a single random variable

In WHLS, the total probability area created by probability density 

function and horizontal axis (random variable axis) is divided into n 

intervals, and samples are selected from each interval as similarly as in LHS. 

These intervals need not have the same probability area, unlike LHS. In 

LHS method, the total probability area is divided into n intervals with 

the same areas, and n samples are selected from these intervals. There-

fore, the probability of selecting each sample is the same as 



. On the 

other hand, in WLHS method, the probability area in each interval is 

different from each other. Therefore, probabilities of selecting samples 
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in these intervals are different from each other. As mentioned above, the 

probability area (Ai) of each interval is the same as probability of selec-

ting a sample from that interval, so that it is used as a weight function. 

This sampling method is referred to as Weighted Latin Hypercube Samp-

ling (WLHS). The weight defined this way is represented by Eq. (1).

w
i
A

i (6)

where i refers to a natural number ranging from 1 to n, the number of 

sample. 


 





 


 should be satisfied. 

2.2.2 Weight function for two or more random variables

If the probability distribution of population is defined by two 

random variables X and Y, weight 
 for a sample selected in the jth 

sample interval (a,b) of random variable X is defined as the probability 

area of the jth interval, and weight 
  for a sample selected in the kth 

sample interval (c,d) of random variable Y is defined in the same way. 

The probability (or weight  ) that the jth sample of X and the kth sam-

ple of Y can be selected at the same time is the same as probability volume 

created by joint probability distribution in joint sample region of X and 

Y. This is represented by Eq. (7).
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where if two variables X and Y are mutually independent, the equation 

above is simplified as follows. Furthermore, in a case where random 

variables are more than two, weight can be defined in the same way.
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2.2.3 Sample mean and sample variance

In the case of using WLHS, the probability of selecting each sample 

  is the same as weight   as mentioned above. Considering this, weigh-

ted sample mean   and unbiased weighted sample variance  2 can be 

defined as follows. The derivation of these equations is described in 

Appendix. It is assumed that random variable  has normal distri-

bution in derivation for unbiased weighted sample variance.
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If weight   in the two equations above is 



, they are simplified to 

those equations defined in LHS. Eq. (10) is the same as the equation 

defined by Wiki [7], GNU Scientific Library [8] and Madansky [9] for 

unbiased weighted sample variance. On the other hand, the derived 

equation for weighted sample variance by Copper et al. [10] fails to 

meet the unbiased condition of sample variance. Equations failing to 

meet unbiased condition have been used for some programs and research 

results without recognition of such confusion [11].

Equations derived above for WLHS can be easily extended to log-nor-

mal distribution. Let Y has log-normal distribution. Then, ‘X ln’ has 

normal distribution, so that sample mean   of X is defined as follows:

 ln w
i






  



ln

(11)

where   is a sample selected from the ith sample interval of log-normal 

distribution, and   is sample median of population with log-normal 

distribution and defined as follows:

 exp
  




ln (12)

The sample lognormal variance of population,  2, is the same as the 

sample variance of lnY,  ln

2. Therefore,  2 is defined as follows:

2 = ln

2 =





 





  




ln

 ln2 (13)

Sampling intervals in WLHS can be selected more flexibly than in 

LHS, in consideration of users’ conveniences or the limits of given data. 

In other words, the mean and variance of population with normal distri-

bution (or lognormal distribution) can be approximated more flexibly 

using sample mean (or median) and sample variance (sample lognor-

mal variance) calculated according to the equations presented in this sec-

tion. Based on this calculation, tail values of the normal distribution of 

population can also be approximated using the approximated distribu-

tion parameters.

3. Numerical examples

How accurately WLHS can estimate the probability distribution of 
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population is reviewed according to procedures such as 1) to assume 

population whose probability distribution is known, 2) to select sam-

ples by different sampling methods such as Random Sampling, Latin 

Hypercube Sampling and Weighted Latin Hypercube Sampling, and 3) 

to compare how accurately each sampling method can estimate the dis-

tribution parameters. Sampling intervals and weights are properly as-

sumed in WLHS as described in the previous section.

3.1 Assumed probability distribution of population

It is assumed that population has standard normal distribution. In 

other words, the mean and standard deviation of population are assu-

med as 0 and 1, respectively. Figs. 1 and 2 show probability density 

function (PDF) and cumulative distribution function (CDF) of that proba-

bility distribution. Samples are selected from the population using 

Random Sampling, LHS and WLHS. Sample mean and standard devia-

tion are calculated, and their accuracy is verified through their compa-

rison with the known mean and standard deviation of population. Note 

that since it is shown in Section 2 how to estimate distribution para-

meters for an example having log-normal distribution, one can easily 

conduct analysis for it. However, the example having standard normal 

distribution is considered in this paper.

3.2 Weighted Latin Hypercube Sampling

Samples are selected from population using Random Sampling, 

Latin Hypercube Sampling and Weighted Latin Hypercube Sampling. 

In Random Sampling, samples are selected randomly from standard 

normal distribution. In Latin Hypercube Sampling and Weighted Latin 

Hypercube Sampling, sample intervals are set according to the pro-

cedures mentioned in Section 2, and samples are selected at the proba-

bility-area center in each interval. To select samples in WLHS, sample 

weight   should be defined according to Section 2.2. As described in 

Eq. (6), the weight can be considered as the probability area of each samp-

ling interval, Ai. Sampling interval can be easily defined by making the 

probability area of each interval of random variable equal to weight, 

 . The weight   can be defined depending on distribution of collec-

ted data, or empirical intuition of researchers.

In this example, weight   is chosen to have the following definition.


A

i
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where  is a positive real number, and normalization coefficient 

 


 α

   is defined to meet 


 


. When  is 0, wi





 

is established, so that the same samples as in LHS are selected. In this 

example, the results of WLHS produced with the change of  are com-

pared with the results from RS and LHS. As each sampling interval can 

be defined using that weight, the center of probability area of sampling 

interval is selected as sample point according to the following detail 

procedures.

1) Weight   is arranged in the order to be applied to desired locations 

from the left side to the right side of probability distribution. In this 

example, weight is selected to be symmetric with respect to the mean. 

Fig. 3 shows weight   under the conditions of  and the num-

ber of samples,  . It can be found that the weights of WLHS 

are larger in the middle and smaller in both tails than those of LHS.

2) The center of probability area of each sampling interval is located 

using cumulative distribution function. The center of probability 

area of the 1st sample interval is under the condition of cumulative 

distribution function 








, and that of the ith sample 

Fig. 1. PDF of the standard normal distribution

Fig. 2. CDF of the standard normal distribution
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interval is under the condition of 



  
  




. As this 

example assumes that the population follows standard normal distri-

bution,   is equivalent to standard normal cumulative distribution 

function Φ .

3) Sample value,  , at the center of probability area of sample inter-

val is found using inverse cumulative distribution function. In other 

words, 


 
 where    refers to inverse cumulative distri-

bution function. Since the population is assumed to follow standard 

normal distribution,    is equal to   . Fig. 4 shows sample 

value and cumulative probability at the center of probability area of 

each sampling interval under the conditions of  and the 

number of samples,  . Fig. 5 shows the cumulative probability 

of samples over their sample numbers. This figure shows that, 

although samples in LHS are separated by the same intervals in 

probability, the intervals in WLHS are not same each other and 

relatively longer in the center and shorter in both tails.

3.3 Estimation of distribution parameters

For the sake of convenient calculation in the case of many actual 

probability and statistics problems, probability distributions are frequen-

tly estimated on the assumption that population has normal distribution. 

This example assumes that population follows standard normal distri-

bution. If the mean and variance of population can be approximately 

estimated using sample mean and sample variance, the probability distri-

bution of population can be easily approximated by these sample dis-

tribution parameters.

Since all samples in LHS have the same weights, the sample mean 

and sample variance are estimated according to Eqs. (1) and (2) in Sec-

tion 2.1, respectively. Likewise, since all samples in RS have the same 

weights, the same equations as in LHS are used. On the other hand, 

since samples in WLHS have different weights, the sample mean and 

sample variance are estimated according to Eqs. (9) and (10) in Section 

2.2, respectively.

Figs. 6 and 7 show the sample mean and sample standard deviation 

that vary according to the number of samples under the condition of 

. The sample mean under LHS and WLHS is exactly the same as 

population mean. The reason is that LHS and WLHS selected samples 

symmetrically in this example so that the sample mean could be main-

tained to be exact to the population mean. In the cases of LHS and WHLS, 

mean and standard deviation of population are estimated quite efficien-

tly and accurately comparing to RS. As shown in these figures, large 

enough number of samples in RS are necessary to approximate the 

mean and standard deviation of population.

Figs. 8 and 9 show sample mean and sample standard deviation that 

vary according to the number of samples under the condition of  

respectively. Fig. 8 shows that the sample means under LHS and WLHS 

are exactly the same as population mean due to the above- mentioned 

reason. Fig. 9 shows that sample standard deviation under WLHS esti-

Fig. 3. Symmetric weights of samples in WLHS and LHS

Fig. 4. Cumulative probability vs. sample values

Fig. 5. Cumulative probability vs. sample numbers
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mates population standard deviation less accurately compared to LHS. 

The reason is that, as samples are concentrated on both tails with the 

increase of , sample standard deviation is overestimated compared 

with population standard deviation. This trend become more extreme 

with the increase of . In the case of using WLHS, samples are rela-

tively concentrated on both tails, and thus sample standard deviation 

can be estimated at larger than population standard deviation. It is 

necessary to conduct a study in future on how samples can be properly 

distributed considering this effect.

3.4 Asymmetric sampling

To estimate the distribution parameter of population in this 

example, samples were selected symmetrically with respect to the mean 

in the previous sections. It is rare that collected data given as samples 

are distributed symmetrically with respect to the mean. Therefore, it is 

interesting to see what results any asymmetric sampling will produce 

in the above-mentioned example. For asymmetric sampling, weights 

will be defined by Eq. (14) and with a sequential increase from the left 

tail in index number i. Fig. 10 shows weight   selected asymmet-

rically under the condition of  and  . As a point moves 

Fig. 6. Sample mean over number of samples when   

Fig. 7. Sample standard deviation over number of samples when 

  

Fig. 8. Sample mean over number of samples when 

Fig. 9. Sample standard deviation over number of samples when 



Fig. 10. Asymmetric weights of samples in WLHS and LHS
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from the left to the right on the graph, weight becomes lower. This 

means that samples are selected more densely in the right tail.

Figs. 11 and 12 respectively show sample mean and sample stan-

dard deviation that vary according to the number of samples under the 

condition of . Fig. 11 shows that sample mean of LHS is exactly 

the same as population mean, but that sample mean of WLHS esti-

mates population mean with a little error. As WLHS selects sample asym-

metrically, sample mean is biased toward where samples are more 

concentrated. As shown in Fig. 12, LHS estimates population standard 

deviation more accurately than WLHS.

Figs. 13 and 14 respectively show sample mean and sample standard 

deviation that vary according to the number of samples under the 

condition of . Fig. 13 shows that sample mean of LHS is exactly 

the same as population mean, but that sample mean of WLHS estima-

tes population mean with a little error. This is attributed to the same 

reason as that of Fig. 11. In Fig. 14, LHS estimates population standard 

deviation more accurately than WLHS. Therefore, it is necessary to 

study in future on how to distribute samples effectively in WLHS in 

order to minimize the difference between the sample standard devia-

tion and the population standard deviation.

4. Application to seismically isolated structu-

res in nuclear power plants

Huang et al. [1] considered the uncertainties using LHS for a study 

on seismic performance evaluation of seismically isolated structures in 

NPPs. The same numerical example as Huang et al. [1] is used in this 

paper with the site-specific ground motions of the nuclear power plant 

in Diablo Canyon, which is western region in the USA. In this nume-

rical example, clearance-to-stops (CSs) calculated using LHS propo-

sed by Huang et al. [1] and WLHS, respectively, are compared to inves-

tigate the effect of using different sampling techniques.

Fig. 11. Sample mean over number of samples when  and 

asymmetrically sampled

Fig. 12. Sample standard deviation over number of samples when 

 and asymmetrically sampled

Fig. 13. Sample mean over number of samples when  and 

asymmetrically sampled

Fig. 14. Sample standard deviation over number of samples when 

 and asymmetrically sampled
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4.1 Lumped-mass model for a seismically isolated structure

Huang et al. [1] represented behaviours of seismically isolated 

structures by a lumped-mass model as shown in Fig. 15, to which 

seismic isolation devices such as friction-pendulum bearing, low-dam-

ping rubber bearing, and lead-rubber bearing were applied. In this 

paper, among these three isolation devices, a lead-rubber bearing is 

selected to implement for the lumped-mass model. The lumped-mass 

model represents an upper structure as a lumped mass , which has 

two horizontal degrees of freedom and one vertical degree of freedom 

as shown in Fig. 15. The spring and damper are introduced to express 

stiffness and damping effect in each degree of freedom. The restoring 

force of nonlinear spring in two horizontal directions is expressed as a 

bilinear function  
, and the linear spring stiffness in vertical 

direction is expressed as constant  . The restoring force of nonlinear 

spring in horizontal direction can be represented by a bilinear function, 

which is defined with secondary horizontal stiffness  , yield strength 

 , and yield displacement   as shown in Fig. 16. Yield strength can 

be alternatively expressed by the y-intercept  , and primary hori-

zontal stiffness   can be calculated as dividing yield strength   by 

yield displacement  . The present paper employs OpenSEES (2016) 

to perform nonlinear response history analyses (RHA) using this lum-

ped-mass model.

For known horizontal yield displacement  , y-intercept   and hori-

zontal natural period  , one can easily determine the first and secon-

dary horizontal stiffness   and  , respectively, and the yield strength 

 . For known  , one can easily determine the vertical stiffness  . In 

the seismic isolation system, we assume that the horizontal yield 

displacement is 25 mm and the vertical natural period   is 0.05 sec. 

Therefore,   and   are considered as random variables in this nu-

merical example. Nine isolation systems are considered by setting three 

cases of   such as 2, 3, and 4 sec, and three cases of   such as 0.03 W, 

0.06 W, and 0.09 W. Among these, only two examples, representing the 

smallest and the largest differences between CSs calculated by LHS 

and WLHS, are selected to be shown.

A probability distribution of properties of seismic isolation systems 

occur during manufacturing process and quality control for seismic 

isolation units. Scale factors are defined to represent this distribution as 

these are multiplied with the mean values of properties to generate 

samples. The mean value of the scale factor is one, and the standard devia-

tion are defined according to cases where quality control is excellent or 

good [1]. If the properties under excellent quality control have 95% 

confidence within ±10% interval from the best-estimated value, it has 

a normal distribution with 0.05 of standard deviation. If the properties 

under good quality control have 95% confidence within ±20% interval 

from the best-estimated value, it has a normal distribution with 0.1 of 

standard deviation. Table 1 show 30 samples of the scale factor ext-

racted using LHS and WLHS for cases whose quality control is 

excellent and good. In these numerical examples, we consider three 

properties,  ,   and  , as random variables under excellent quality 

control, and  in Eq. (14) is assumed to be 0.5 for determining sample 

weights in WLHS.

4.2 Input ground motion

In this example, 30 sets of input ground motions are selected as 

same as Huang et al. [1], and matched with the site-specific design 

spectrum of nuclear power plants in Diablo Canyon, western region in 

the USA. The matched input ground motions are considered as Design 

(a) Simplified shape of isolated structure

(b) Analysis model with a lumped mass

Fig. 15. Isolated structure in nuclear power plants

Fig. 16. Hysteretic bilinear response of a LR bearing in horizontal 

direction
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Basis Earthquakes (DBE). A single set of the input ground motions 

consists of two horizontal ground motions and one vertical ground 

motion.

It is reasonable to make intensity of input ground motions different 

in each direction if input ground motions in both directions are pro-

duced from one Uniform Hazard Response Spectrum (UHRS). Huang 

et al. [1] introduced the ratio,  , of input ground motion in horizontal 

direction and the ratio,  , in vertical direction to the geometric means. 

These ratios are considered as random variables, and their distributions 

are defined based on statistics of measured earthquakes. For  , the 

median value,  , is 1.3 and the logarithmic standard deviation,  , is 

0.13. For  , the median value,  , is 1.0 and the logarithmic standard 

deviation,  , is 0.18. To maintain the same geometric mean in 

horizontal directions, the strong-axis ground motion is defined as   

times of the geometric mean while the weak-axis ground motion in the 

orthogonal direction 



 times. Thirty samples of   (Table 2) are 

extracted using LHS and WLHS ( in Eq. (14) is assumed to be 0.5 for 

determining sample weights), respectively, and then the maximum- 

minimum spectra compatible ground motions are defined by multipl-

ying the samples of   or 



 with 30 sets of the selected ground mo-

tions. Fig. 17(a), (b) show the distributed maximum-minimum spectra 

compatible ground motions of the design basis earthquake in hori-

zontal directions determined by WLHS. The similar figures determi-

ned by LHS can be found in Huang et al. [1].

In the same way, thirty samples of   (Table 2) are extracted using 

LHS and WLHS, respectively, and then the samples of ground motions 

are determined by multiplying the samples of   with 30 sets of the 

selected ground motions. Fig. 17(c) show the distributed ground 

Table 1. Scale factors of LHS and WLHS for isolation system

No.
Latin hypercube sampling Weighted latin hypercube sampling

Excellent control Good control Excellent control Good control

1 0.894 0.787 0.884 0.768

2 0.918 0.836 0.906 0.813

3 0.931 0.862 0.919 0.837

4 0.940 0.881 0.928 0.855

5 0.948 0.896 0.935 0.870

6 0.955 0.910 0.941 0.883

7 0.961 0.922 0.947 0.895

8 0.966 0.933 0.953 0.906

9 0.971 0.943 0.958 0.916

10 0.976 0.952 0.963 0.927

11 0.981 0.961 0.969 0.937

12 0.985 0.970 0.974 0.948

13 0.989 0.979 0.980 0.960

14 0.994 0.987 0.987 0.973

15 0.998 0.996 0.995 0.990

16 1.002 1.004 1.005 1.010

17 1.006 1.013 1.013 1.027

18 1.011 1.021 1.020 1.040

19 1.015 1.030 1.026 1.052

20 1.019 1.039 1.031 1.063

21 1.024 1.048 1.037 1.073

22 1.029 1.057 1.042 1.084

23 1.034 1.067 1.047 1.094

24 1.039 1.078 1.053 1.105

25 1.045 1.090 1.059 1.117

26 1.052 1.104 1.065 1.130

27 1.060 1.119 1.072 1.145

28 1.069 1.138 1.081 1.163

29 1.082 1.164 1.094 1.187

30 1.106 1.213 1.116 1.232

Table 2. Scale factors of LHS and WLHS for input ground motions

No.

Latin hypercube sampling Weighted latin hypercube sampling

Horizontal 

direction

Vertical 

direction
Horizontal Vertical

1 0.986 0.682 0.961 0.658

2 1.050 0.744 1.019 0.714

3 1.086 0.780 1.052 0.746

4 1.113 0.807 1.077 0.771

5 1.136 0.830 1.098 0.791

6 1.156 0.850 1.117 0.810

7 1.174 0.868 1.134 0.827

8 1.191 0.886 1.150 0.844

9 1.207 0.902 1.166 0.860

10 1.222 0.918 1.182 0.877

11 1.236 0.933 1.198 0.893

12 1.251 0.948 1.215 0.911

13 1.265 0.963 1.234 0.930

14 1.279 0.978 1.256 0.953

15 1.293 0.993 1.284 0.983

16 1.307 1.008 1.317 1.018

17 1.321 1.023 1.346 1.049

18 1.336 1.039 1.369 1.075

19 1.351 1.055 1.390 1.098

20 1.367 1.072 1.410 1.119

21 1.383 1.090 1.430 1.141

22 1.401 1.109 1.449 1.162

23 1.419 1.129 1.469 1.185

24 1.439 1.151 1.491 1.209

25 1.462 1.176 1.514 1.235

26 1.488 1.205 1.539 1.264

27 1.518 1.239 1.569 1.298

28 1.556 1.283 1.606 1.340

29 1.610 1.345 1.658 1.401

30 1.714 1.467 1.759 1.519
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motions of the design basis earthquake in vertical direction determined 

by WLHS. The similar figures determined by LHS also can be found in 

Huang et al. [1].

4.3 Effect of WLHS on CS

The effect of sampling techniques on CS is discussed in this section. 

Since CS is defined as 90%-ile displacement under 150% DBE accor-

ding to ASCE 4 draft [12], the DBE shown in Fig. 17 are amplified by 

150% and then applied as input ground motions to the lumped-mass 

model in Fig. 15(b). Among the 9 cases of isolation systems mentioned 

in Section 4.1, only two examples, representing the smallest and the 

largest differences between CSs calculated by LHS and WLHS, are 

selected to be shown in this section. The CDF of displacements based 

on the isolation system with   2 sec and   0.03W and isolation 

system with   3 sec,   0.03W are shown in Figs. 18 and 19, respe-

ctively. Figs. 18(a) and 19(a) compare the CDF of sample displace-

ments and the corresponding estimated CDF calculated by LHS and 

WLHS. Figs. 18(b) and 19(b) show the enlarged view of the right tails 

in the CDFs. Here, the blue points indicate samples acquired through 

LHS and the red points indicates samples through WLHS. The estima-

ted CDF is shown with dotted lines by calculating sample medians and 

sample logarithmic standard deviations.

According to Fig. 18(b), the calculated CSs (90%-ile displacements 

based on the estimated CDFs) by LHS and WLHS are 1080 mm and 1076 

mm, respectively, so that the choice of sampling techniques essentially 

does not make any difference. However, the choice of the sampling 

techniques makes 16% difference in CS since the calculated CSs by 

LHS and WLHS are 1589 mm and 1549 mm, respectively, as shown in 

Fig. 19(b). These results indicate that a choice of sampling techniques 

can cause significant difference in CS. Therefore, it is necessary to stan-

dardize the sampling technique for calculating CS.

Figs. 18(a) and 19(a) show that there are significant differences bet-

ween the samples and the estimated CDFs. This occurs because the 

assumed lognormal distribution is different from the actual distribu-

tion of population, and/or because there is randomness in sampling pro-

cedure. This difference can be reduced by extended case studies and in- 

depth reviews on the sampling procedure.

5. Conclusion

This study presented Weighted Latin Hypercube Sampling which is 

expansion of Latin Hypercube Sampling by applying weights to samp-

les. WLHS allows more flexible way of selecting samples. The results 

are summarized as follows:

1) The WLHS, which is an extension of Latin Hypercube Sampling (LHS) 

30 sets of maximum DBE spectra for 

horizontal direction

(b) 30 sets of minimum DBE spectra for 

the orthogonal horizontal direction

(c) 30 sets of DBE spectra for 

vertical direction

Fig. 17. 5% damped response spectra for the Diablo Canyon site by WLHS

(a) CDF of displacements (b) Enlarged CDF at the right tail

Fig. 18. Compare displacements under 150% DBE by LHS and WLHS 

(with isolation system: = 2 sec, = 0.03 W)

(a) CDF of displacements (b) Magnified CDF at the right tail

Fig. 19. Compare displacements under 150% DBE by LHS and 

WLHS (with isolation system: =3 sec, =0.03 W)
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to avoid the necessity of using sampling intervals having the same 

probability area, has been proposed. WLHS provides more flexible 

way on selecting samples by using sampling intervals having diffe-

rent probability areas.

2) To approximate distribution parameters of population, the equa-

tions and procedures for calculating sample mean and sample va-

riance of normal distribution (or sample median and sample lognor-

mal variance of log-normal distribution) were clearly described 

with consideration of applying sample weights.

3) Accuracy of WLHS estimation on distribution parameters is depen-

ding on the selection of weight function. By comparing distribution 

parameters estimated by WLHS with the results of RS and LHS 

through numerical examples, it is found that distribution parame-

ters can be estimated quite accurately using proper weights.

4) In WHLS where samples are distributed symmetrically with res-

pect to mean, population mean is found to be accurately estimated by 

sample mean. On the other hand, in a case where they are asym-

metrically distributed, the accuracy of an estimation of population 

mean is found to be relatively low.

5) In WHLS where samples are distributed symmetrically with respect 

to mean, samples are relatively concentrated on both tails, so that 

sample standard deviation is overestimated compared to population 

standard deviation.

6) In WLHS where samples are distributed asymmetrically, LHS is 

found to estimate population mean and population standard devia-

tion more accurately than WLHS.

7) There is a need for a further study on how to distribute samples 

properly in WLHS to estimate distribution parameters with suffi-

cient accuracy.

8) A choice of sampling techniques between LHS and WLHS can 

cause significant difference in determining CS. Since it would be 

better to minimize this randomness caused by choice of sampling 

techniques, reviews on the sources of this differences should be 

performed in future study.

9) There are significant differences between the samples and the 

estimated CDFs. This occurs because the assumed lognormal 

distribution is different from the actual distribution of population, 

and/or because there is randomness in sampling procedure. This 

difference can be reduced by extended case studies and in-depth 

reviews on the sampling procedure.

10) Although ASCE 43 [2] requires the probabilistic design technique 

in NPP, the sampling method in the probabilistic design technique 

is not clearly mentioned. The sampling method proposed in the 

present study can be one alternative. In order to guarantee con-

sistent design regardless of choice of sampling techniques, it is ne-

cessary to establish a consistent sampling technique based on nu-

merous examples in future.
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/ Appendix /

In this appendix, equations for defining sample mean and unbiased 

sample variance is derived using Weighted Latin Hypercube Sampling. 

Before deriving this, it is helpful to review the process of deriving 

equations for sample mean and unbiased sample variance using Latin 

Hypercube Sampling. In LHS, each sample has the same selection 

probability (or weights) 



, so that the sample mean   can be written 

as follows:







⋯





  



 (A-1)

where   refers to the ith sample, and  refers to the number of samples. 

Sample variance 

 can be defined as follows where sample mean   is 

used.
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 (A-2d)

Since sample mean   and population mean  do not vary according 

to i, they can move out from the summation in the last term of Eq. 

(A-2c). Note that Eq. (A-3) is easily derived based on Eq. (A-1). 


  




 

  




 (A-3)

Because of Eq. (A-3), the last term of Eq. (A-2d) is removed. 

Applying unbiased variance condition, the expectation of sample 

variance (Eq. (A-2)) should be the same as population variance, Eq. 

(A-4) is derived.

   








  




 




 (A-4)

By multiplying the both sides by number of samples, , the above 

equation becomes

 




  









   (A-5)

where if   follows normal distribution with population variance  , 

  follows normal distribution with variance 




. Therefore, the 2nd 

term on the right hand side in Eq. (A-5) is as follows:

   




(A-6)

Applying Eq. (A-6) to Eq. (A-5) gives

 




  









 (A-7)

Eq. (A-7) can be rewritten for   using unbiased variance condition 

as follows:

   








  









 (A-8)

Let expectations in both sides of Eq. (A-8) are removed. Then, 

unbiased sample variance is derived as follows:








  




 (A-9)

If square-root is taken in Eq. (A-9), unbiased sample standard 

deviation   is represented by Eq. (A-10) [13].

 






  




 (A-10)

Sample mean and sample variance of WLHS can be derived 

according to the same process and procedure as those in LHS. In 

WLHS, each sample has different selection probability (or weights) 

 , and so sample mean   can be defined as follows:




⋯


  



 (A-11)

where   refers to the   sample;  refers to the number of samples. 

The sum of weight   should be 1, 


 
 . Sample variance 


 

can be defined and developed as follows using  .
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 (A-12a)


  






 (A-12b)


  



 
  

 (A-12c)


  



 
 

  




 (A-12d)

Since sample mean   and population mean  do not vary according to 

i, they can move out from the summation in the last term of Eq. (A- 2d). 

The following equation is easily derived based on 


 
  and 

Eq. (A-11).


  






 
  






  




 (A-13)

Because of Eq. (A-13), the last term of Eq. (A-12d) is removed. 

Applying unbiased variance condition, the expectation of sample 

variance (Eq. (A-12)) should be the same as population variance, Eq. 

(A-14) is derived.

   




  






 
  









 (A-14)

As sample mean   and population mean  do not vary according to 

i, they can move out from the summation of the last term in Eq. (A-14).

 




  

















  








 (A-15)

where 


 
 . Let   have normal distribution with population 

variance  . Then,  , which is defined by linear combination (Eq. 

(A-11) of  , also has normal distribution. Therefore, the last term of 

the equation above is

   (A-16a)


  



 (A-16b)


  




 × (A-16c)



  




 (A-16d)

Applying this equation to Eq. (A-15), Eq. (A-17) is derived.


  




 





  










 (A-17)

Eq. (A-17) is rewritten for   using unbiased variance condition, 

Eq. (A-18) is derived.

   







 






  










 (A-18)

Let expectations in both sides of Eq. (A-18) removed. Then, unbiased 

sample variance is derived as follows:









 





  






 (A-19)

If square-root is taken in Eq. (A-19), unbiased sample standard 

deviation   is represented by Eq. (A-20).
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