DOI QR코드

DOI QR Code

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong (Department of Hydraulic Engineering, Tsinghua University) ;
  • Irfan, Muhammad (Civil Engineering Department, University of Engineering and Technology Lahore)
  • Received : 2016.08.25
  • Accepted : 2017.07.14
  • Published : 2018.02.10

Abstract

Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Keywords

Acknowledgement

Supported by : China Postdoctoral Science Foundation

References

  1. Andreev, G. (1991a), "A review of the Brazilian test for rock tensile strength determination. Part I: Calculation formula", Min. Sci. Technol., 13(3), 445-456. https://doi.org/10.1016/0167-9031(91)91006-4
  2. Andreev, G. (1991b), "A review of the Brazilian test for rock tensile strength determination. Part II: Contact conditions", Min. Sci. Technol., 13(3), 457-465. https://doi.org/10.1016/0167-9031(91)91035-G
  3. Erarslan, N. and Williams, D.J. (2012), "Experimental, numerical and analytical studies on tensile strength of rocks", J. Rock. Mech. Min. Sci., 49, 21-30. https://doi.org/10.1016/j.ijrmms.2011.11.007
  4. Fairhurst, C. (1964), "On the validity of the 'Brazilian' test for brittle materials", Rock Mech. Min. Sci. Geomech. Abstr., 1(4), 535-546. https://doi.org/10.1016/0148-9062(64)90060-9
  5. Filimonov, Y.L., Lavrov, A., Shafarenko, Y. and Shkuratnik, V. (2001), "Memory effects in rock salt under triaxial stress state and their use for stress measurement in a rock mass", Rock Mech. Rock Eng., 34(4), 275-291. https://doi.org/10.1007/s006030170002
  6. Fu, X., Xie, Q. and Liang, L. (2015), "Comparison of the Kaiser effect in marble under tensile stresses between the Brazilian and bending tests", Bull. Eng. Geol. Environ., 74(2), 535-543. https://doi.org/10.1007/s10064-014-0707-4
  7. Goodman, R.E. (1963), "Subaudible noise during compression of rocks", Geol. Soc. Am. Bull., 74(4), 487-490. https://doi.org/10.1130/0016-7606(1963)74[487:SNDCOR]2.0.CO;2
  8. Hashiba, K. and Fukui, K. (2015), "Effect of water on the deformation and failure of rock in uniaxial tension", Rock Mech. Rock Eng., 48(5), 1751-1761. https://doi.org/10.1007/s00603-014-0674-x
  9. Hsieh, A., Dight, P. and Dyskin, A. (2015), "The rock stress memory unrecoverable by the Kaiser effect method", J. Rock. Mech. Min. Sci., (75), 190-195.
  10. Kaiser, J. (1953), "Erkenntnisse und folgerungen aus der messung von geräuschen bei zugbeanspruchung von metallischen werkstoffen", Steel Res., 24(1-2), 43-45.
  11. Khanlari, G.R., Heidari, M., Sepahigero, A.A. and Fereidooni, D. (2014), "Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests", Eng. Geol., 169, 80-90. https://doi.org/10.1016/j.enggeo.2013.11.014
  12. Kurita, K. and Fujii, N. (1979), "Stress memory of crystalline rocks in acoustic emission", Geophys. Res. Lett., 6(1), 9-12. https://doi.org/10.1029/GL006i001p00009
  13. Lanaro, F., Sato, T. and Stephansson, O. (2009), "Microcrack modelling of Brazilian tensile tests with the boundary element method", J. Rock. Mech. Min. Sci., 46(3), 450-461. https://doi.org/10.1016/j.ijrmms.2008.11.007
  14. Lavrov, A. (2003), "The Kaiser effect in rocks: Principles and stress estimation techniques", J. Rock. Mech. Min. Sci., 40(2), 151-171. https://doi.org/10.1016/S1365-1609(02)00138-7
  15. Li, C. and Nordlund, E. (1993), "Experimental verification of the Kaiser effect in rocks", Rock Mech. Rock Eng., 26(4), 333-351. https://doi.org/10.1007/BF01027116
  16. Li, D. and Wong, L.N.Y. (2013), "The Brazilian disc test for rock mechanics applications: Review and new insights", Rock Mech. Rock Eng., 46(2), 269-287. https://doi.org/10.1007/s00603-012-0257-7
  17. Liu, J., Chen, L., Wang, C., Man, K., Wang, L., Wang, J. and Su, R. (2014), "Characterizing the mechanical tensile behavior of Beishan granite with different experimental methods", J. Rock. Mech. Min. Sci., 69, 50-58.
  18. Mao, W. and Towhata, I. (2015), "Monitoring of single-particle fragmentation process under static loading using acoustic emission", Appl. Acoust., 94, 39-45. https://doi.org/10.1016/j.apacoust.2015.02.007
  19. Mikl-Resch, M.J., Antretter, T., Gimpel, M., Kargl, H., Pittino, G., Tichy, R., Ecker, W. and Galler, R. (2015), "Numerical calibration of a yield limit function for rock materials by means of the Brazilian test and the uniaxial compression test", J. Rock. Mech. Min. Sci., 74, 24-29.
  20. Nian, T., Wang, G. and Song, H. (2017), Open tensile fractures at depth in anticlines: A case study in the Tarim basin, NW china", Terra Nova, 29(3), 183-190. https://doi.org/10.1111/ter.12261
  21. Saksala, T., Hokka, M., Kuokkala, V.T. and Makinen, J. (2013), "Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite", J. Rock. Mech. Min. Sci., 59, 128-138.
  22. Seto, M., Nag, D. and Vutukuri, V. (1999), "In-situ rock stress measurement from rock cores using the acoustic emission method and deformation rate analysis", Geotech. Geol. Eng., 17(3-4), 241-266. https://doi.org/10.1023/A:1008981727366
  23. Seto, M., Utagawa, M., Katsuyama, K., Nag, D. and Vutukuri, V. (1997), "In situ stress determination by acoustic emission technique", J. Rock. Mech. Min. Sci., 34(3-4), 281.
  24. Tuncay, E. and Ulusay, R. (2008), "Relation between Kaiser effect levels and pre-stresses applied in the laboratory", J. Rock. Mech. Min. Sci., 45(4), 524-537. https://doi.org/10.1016/j.ijrmms.2007.07.013
  25. Villaescusa, E., Seto, M. and Baird, G. (2002), "Stress measurements from oriented core", J. Rock. Mech. Min. Sci., 39(5), 603-615. https://doi.org/10.1016/S1365-1609(02)00059-X
  26. Wu, B., Chen, R. and Xia, K. (2015), "Dynamic tensile failure of rocks under static pre-tension", J. Rock. Mech. Min. Sci., 80, 12-18.
  27. Xue, L., Qin, S., Sun, Q., Wang, Y., Lee, L.M. and Li, W. (2014), "A study on crack damage stress thresholds of different rock types based on uniaxial compression tests", Rock Mech. Rock Eng., 47(4), 1183-1195. https://doi.org/10.1007/s00603-013-0479-3
  28. Yang, S.Q., Ranjith, P. and Gui, Y.L. (2015), "Experimental study of mechanical behavior and x-ray micro ct observations of sandstone under conventional triaxial compression", Geotech. Test. J., 38(2), 179-197. https://doi.org/10.1520/GTJ20140209
  29. Yuan, R. and Shen, B. (2017), "Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock", J. Rock. Mech. Min. Sci., 93, 54-65.

Cited by

  1. Estimation of tensile strength and moduli of a tension-compression bi-modular rock vol.24, pp.4, 2021, https://doi.org/10.12989/gae.2021.24.4.349
  2. Cluster and information entropy analysis of acoustic emission during rock failure process vol.25, pp.2, 2018, https://doi.org/10.12989/gae.2021.25.2.135