References
- Mukherjee, P. K., Maity, N., Nema, N. K. and Sarkar, B. K. 2011. Bioactive compounds from natural resources against skin aging. Phytomedicine. 19, 64-73. https://doi.org/10.1016/j.phymed.2011.10.003
- Ratnasooriya, W. D., Abeysekera, W. P. K. M. and Ratnasooriya, C. T. D. 2014. In vitro anti-hyaluronidase activity of Sri Lankan low grown orthodox orange pekoe grade black tea (Camellia sinensis L.). Asian Pac. J. Trop. Biomed. 4, 959-963. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0462
- Ndlovu, G., Fouche, G., Tselanyane, M., Cordier, W. and Steenkamp, V. 2013. In vitro determination of the anti-aging potential of four southern African medicinal plants. BMC Complement. Altern. Med. 13, 304-311. https://doi.org/10.1186/1472-6882-13-304
- Maity, N., Nema, N. K., Abedy, Md. K., Sarkar, B. K. and Mukherjee, P. K. 2011. Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J. Ethnopharmacol. 137, 1300-1305. https://doi.org/10.1016/j.jep.2011.07.064
- Tammi, R., Ripellino, J. A., Margolis, R. U. and Tammi Markku. 1988. Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J. Invest. Dermatol. 90, 412-414. https://doi.org/10.1111/1523-1747.ep12456530
- Buhren, B. A., Schrump, H., Hoff, N. P., Bolke, E., Hilton, S. and Gerber, P. A. 2016. Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur. J. Med. Res. 21, 5. https://doi.org/10.1186/s40001-016-0201-5
- Uppala, L. 2015. A review on active ingredients from marine sources used in cosmetics. SOJ Pharm. Pharm. Sci. 2, 1-3.
- Lindequist, U. 2016. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther. 24, 561-571. https://doi.org/10.4062/biomolther.2016.181
- Sanjeewa, K. K. A., Kim, E. A., Son, K. T. and Jeon, Y. J. 2016. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review. J. Photochem. Photobiol. B-Biol. 162, 100-105. https://doi.org/10.1016/j.jphotobiol.2016.06.027
- Wang, T., Sun, Y., Jin, L. J., Thacker, P., Li, S. and Xu, Y. 2013. Aj-rel and Aj-p105, two evolutionary conserved NF-kappa B homologues in sea cucumber (Apostichopus japonicus) and their involvement in LPS induced immunity. Fish Shellfish Immunol. 34, 17-22. https://doi.org/10.1016/j.fsi.2012.09.006
- Oh, G. W., Ko, S. C., Lee, D. H., Heo, S. J. and Jung, W. K. 2017. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): A review. Fish. and Aquat. Sci. 20, 28. https://doi.org/10.1186/s41240-017-0071-y
- Li, L. and Li, Q. 2010. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka). Aquac. Int. 18, 447-460. https://doi.org/10.1007/s10499-009-9256-4
- Kanno, M., Suyama, Y., Li, Q. and Kijima, A. 2006. Microsatellite analysis of Japanese sea cucumber, Stichopus (Apostichopus) japonicus, supports reproductive isolation in color variants. Mar. Biotechnol. 8, 672-685. https://doi.org/10.1007/s10126-006-6014-8
- Park, S. Y., Lim, H. K., Lee, S. J., Cho, S. K., Park, S. G. and Cho, M. J. 2011. Biological effects of various solvent fractions derived from Jeju Island red sea cucumber (Stichopus japonicas). J. Korean Soc. Appl. Biol. Chem. 54, 718-724.
- Ko, J. Y., Lee J. H., Samarakoon, K., Kim, J. S. and Jeon, Y. J. 2013. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food Chem. Toxicol. 52, 113-120. https://doi.org/10.1016/j.fct.2012.10.058
- Ou, B., Hampsch-Woodill, M. and Prior, R. L. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49, 4619-4626. https://doi.org/10.1021/jf010586o
- Lee, S. J., Jeong, D. S., Yang, H. C., Liu, K. Z. and Lee, N. H. 2001. Screening of the tyrosinase inhibition and hyaluronidase inhibition activities, and radical scavenging effects using plants in Cheju. Ko. J. Pharmacogn. 32, 175-180.
- Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Wang, H. and Joseph, J. A. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612-616. https://doi.org/10.1016/S0891-5849(99)00107-0
- Garciia, J. L., Asadinezhad, A., Pachernik, J., Lehocky, M., Junkar, I., Humpolicek P., Saha, P. and Valasek, P. 2010. Cell Proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules. 15, 2845-2856. https://doi.org/10.3390/molecules15042845
- Puri, M., Sharma, D. and Barrow, C. J. 2012. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 30, 37-44. https://doi.org/10.1016/j.tibtech.2011.06.014
- Lee, S. H., Yang, H. W., Ding, Y. L., Wang, Y., Jeon, Y. J., Moon, S. H., Jeon, B. T. and Sung, S. H. 2015. Anti-inflammatory effects of enzymatic hydrolysates of velvet antler in Raw 264.7 cells in vitro and zebrafish model. EXCLI J. 14, 1122-1132.
-
Lee, S. H., Park, M. H., Park, S. J., Kim, J., Kim, Y. T., Oh, M. C., Jeong, Y., Kim, M. S., Han, J. S. and Jeon, Y. J. 2012. Bioactive compounds extracted from Ecklonia cava by using enzymatic hydrolysis protects high glucose-induced damage in INS-1 pancreatic
$\beta$ -cells. Appl. Biochem. Biotechnol. 167, 1973-1985. https://doi.org/10.1007/s12010-012-9695-7 - Saito, M., Kunisaki, N., Urano, N. and Kimura, S. 2006. Collagen as the major edible component of sea cucumber (Stichopus japonicus). J. Food Sci. 67, 1319-1322.
- Zulueta, A., Esteve, M. J. and Frigola, A. 2009. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 114, 310-316. https://doi.org/10.1016/j.foodchem.2008.09.033
- Lu, C. Y., Lee, H. C., Fahn, H. J. and Wei, Y. H. 1999. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat. Res. Fundam. Mol. Mech. Mutagen. 423, 11-21. https://doi.org/10.1016/S0027-5107(98)00220-6
- Hitoshi, M. 2010. Role of antioxidants in the skin: anti-aging effects. J. Dermatol. Sci. 58, 85-90. https://doi.org/10.1016/j.jdermsci.2010.03.003
- Poljsak, B. and Dahmane, R. 2012. Free Radicals and extrinsic skin aging. Dermatol Res. Practi. 2012, 135206.
- Schieber, M. and Navdeep, S. C. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
- Kammeyer, A. and Luiten, R. M. 2015. Oxidation events and skin aging. Ageing Res. Rev. 21, 16-29. https://doi.org/10.1016/j.arr.2015.01.001
- Raha, S. and Robinson B. H. 2000. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502-508. https://doi.org/10.1016/S0968-0004(00)01674-1
- Kohen, R. 1999. Skin antioxidants: Their role in aging and in oxidative stress new approaches for their evaluation. Biomed. Pharmacother. 53, 181-192. https://doi.org/10.1016/S0753-3322(99)80087-0
- Hochberg, M., Kohen, R. and Enk., C. D. 2006. Role of antioxidants in prevention of pyrimidine dimer formation in UVB irradiated human HaCaT keratinocytes. Biomed. Pharmacother. 60, 233-237. https://doi.org/10.1016/j.biopha.2006.04.008
- Cui, Y., Kima, D., Park, S., Yoon, J., Kima, S., Kwon, S. and Park, K. 2004. Involvement of ERK and p38 MAP kinase in AAPH-induced COX-2 expression in HaCaT cells. Chem. Phys. Lipids. 129, 43-52. https://doi.org/10.1016/j.chemphyslip.2003.11.004
- Zhou, X. and Wang, C. 2012. Antioxidant peptides isolated from sea cucumber Stichopus Japonicus. Eur. Food Res. Technol. 234, 441-447. https://doi.org/10.1007/s00217-011-1610-x
- Selbi, W., Day, A. J., Rugg, M. S., Fulop, C., de la Motte, C. A., Bowen, T., Hascall, V. C. and Phillips, A. O. 2006. Overexpression of hyaluronan synthase 2 alters hyaluronan distribution and function in proximal tubular epithelial cells. J. Am. Soc. Nephrol. 17, 1553-1567. https://doi.org/10.1681/ASN.2005080879
- Stern, R. and Maibach, H. I. 2008. Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin. Dermatol. 26, 106-122. https://doi.org/10.1016/j.clindermatol.2007.09.013
- Scotti, L., Singla, R. K., Ishiki, H. M., Mendonca, F. J., da Silva, M. S., Barbosa Filho, .J. M. and Scotti, M. T. 2016. Recent advancement in natural hyaluronidase Inhibitors. Curr. Top. Med. Chem. 16, 2525-2531. https://doi.org/10.2174/1568026616666160414123857
- Calve, S., Isaac, J., Gumucio, J. P. and Mendias, C. L. 2012. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. Am. J. Physiol. Cell Physiol. 303, C577-C588. https://doi.org/10.1152/ajpcell.00057.2012
- Zhang, Y., Song, S., Song, D., Liang, H., Wang, W. and Ji, A. 2010. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus. J. Biosci. Bioeng. 109, 67-72. https://doi.org/10.1016/j.jbiosc.2009.07.010