DOI QR코드

DOI QR Code

Hyaluronidase Inhibitory and Antioxidant Activities of Enzymatic Hydrolysate from Jeju Island Red Sea Cucumber (Stichopus japonicus) for Novel Anti-aging Cosmeceuticals

  • Ding, Yuling (Department of Pharmaceutical Engineering, Soonchunhyang University) ;
  • Jiratchayamaethasakul, Chanipa (Department of Pharmaceutical Engineering, Soonchunhyang University) ;
  • Kim, Eun-A (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Kim, Junseong (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Heo, Soo-Jin (Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST)) ;
  • Lee, Seung-Hong (Department of Pharmaceutical Engineering, Soonchunhyang University)
  • Received : 2018.11.16
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

An active ingredient with hyaluronidase (HAse) inhibitory effect is one of the anti-aging approaches in cosmeceuticals. Here, red sea cucumbers (RSCs), Stichopus japonicus, from Jeju Island were evaluated to examine their HAse inhibitory and antioxidant activity effect. In this study, RSCs were extracted by six enzymatic hydrolysis (Alcalase; Al, Trypsin; Try, Neutrase; Neu, Pepsin; Pep, Alpha-chymotrypsin; Chy and Protamex; Pro). Alcalase hydrolysate (AlH) showed the highest antioxidant capacities for both of oxygen radical absorbance capacity (ORAC) and trolox equivalent antioxidant capacity (TEAC) methods, compared to those of other hydrolysates, at $66.59{\pm}0.78{\mu}M\;TE/mg$ and $135.78{\pm}3.24{\mu}M\;TE/mg$, respectively. Furthermore, AlH performed the highest capacity of HAse inhibitory with $IC_{50}$ value of 3.21 mg/ml. Thus, RSCs hydrolyzed by Al were chosen to determine the cellular antioxidant activity and hyaluronic acid (HA) production effect on Human immortalized keratinocyte cell line (HaCaT). The results showed that AlH improved the cell viabilities and intracellular reactive oxygen species (ROS) induced by 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) were significantly decreased. In addition, AlH increased HA amount by regulating HYAL2 and HAS2 expressions in the HaCaT cells. Taken together, AlH of RSCs collected from Jeju Island showed HAse inhibitory and antioxidant activities against skin-aging which shows its potentials can be an optional natural bioactive ingredient for novel cosmeceuticals.

Keywords

References

  1. Mukherjee, P. K., Maity, N., Nema, N. K. and Sarkar, B. K. 2011. Bioactive compounds from natural resources against skin aging. Phytomedicine. 19, 64-73. https://doi.org/10.1016/j.phymed.2011.10.003
  2. Ratnasooriya, W. D., Abeysekera, W. P. K. M. and Ratnasooriya, C. T. D. 2014. In vitro anti-hyaluronidase activity of Sri Lankan low grown orthodox orange pekoe grade black tea (Camellia sinensis L.). Asian Pac. J. Trop. Biomed. 4, 959-963. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0462
  3. Ndlovu, G., Fouche, G., Tselanyane, M., Cordier, W. and Steenkamp, V. 2013. In vitro determination of the anti-aging potential of four southern African medicinal plants. BMC Complement. Altern. Med. 13, 304-311. https://doi.org/10.1186/1472-6882-13-304
  4. Maity, N., Nema, N. K., Abedy, Md. K., Sarkar, B. K. and Mukherjee, P. K. 2011. Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. J. Ethnopharmacol. 137, 1300-1305. https://doi.org/10.1016/j.jep.2011.07.064
  5. Tammi, R., Ripellino, J. A., Margolis, R. U. and Tammi Markku. 1988. Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J. Invest. Dermatol. 90, 412-414. https://doi.org/10.1111/1523-1747.ep12456530
  6. Buhren, B. A., Schrump, H., Hoff, N. P., Bolke, E., Hilton, S. and Gerber, P. A. 2016. Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur. J. Med. Res. 21, 5. https://doi.org/10.1186/s40001-016-0201-5
  7. Uppala, L. 2015. A review on active ingredients from marine sources used in cosmetics. SOJ Pharm. Pharm. Sci. 2, 1-3.
  8. Lindequist, U. 2016. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther. 24, 561-571. https://doi.org/10.4062/biomolther.2016.181
  9. Sanjeewa, K. K. A., Kim, E. A., Son, K. T. and Jeon, Y. J. 2016. Bioactive properties and potentials cosmeceutical applications of phlorotannins isolated from brown seaweeds: A review. J. Photochem. Photobiol. B-Biol. 162, 100-105. https://doi.org/10.1016/j.jphotobiol.2016.06.027
  10. Wang, T., Sun, Y., Jin, L. J., Thacker, P., Li, S. and Xu, Y. 2013. Aj-rel and Aj-p105, two evolutionary conserved NF-kappa B homologues in sea cucumber (Apostichopus japonicus) and their involvement in LPS induced immunity. Fish Shellfish Immunol. 34, 17-22. https://doi.org/10.1016/j.fsi.2012.09.006
  11. Oh, G. W., Ko, S. C., Lee, D. H., Heo, S. J. and Jung, W. K. 2017. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): A review. Fish. and Aquat. Sci. 20, 28. https://doi.org/10.1186/s41240-017-0071-y
  12. Li, L. and Li, Q. 2010. Effects of stocking density, temperature, and salinity on larval survival and growth of the red race of the sea cucumber Apostichopus japonicus (Selenka). Aquac. Int. 18, 447-460. https://doi.org/10.1007/s10499-009-9256-4
  13. Kanno, M., Suyama, Y., Li, Q. and Kijima, A. 2006. Microsatellite analysis of Japanese sea cucumber, Stichopus (Apostichopus) japonicus, supports reproductive isolation in color variants. Mar. Biotechnol. 8, 672-685. https://doi.org/10.1007/s10126-006-6014-8
  14. Park, S. Y., Lim, H. K., Lee, S. J., Cho, S. K., Park, S. G. and Cho, M. J. 2011. Biological effects of various solvent fractions derived from Jeju Island red sea cucumber (Stichopus japonicas). J. Korean Soc. Appl. Biol. Chem. 54, 718-724.
  15. Ko, J. Y., Lee J. H., Samarakoon, K., Kim, J. S. and Jeon, Y. J. 2013. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food Chem. Toxicol. 52, 113-120. https://doi.org/10.1016/j.fct.2012.10.058
  16. Ou, B., Hampsch-Woodill, M. and Prior, R. L. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49, 4619-4626. https://doi.org/10.1021/jf010586o
  17. Lee, S. J., Jeong, D. S., Yang, H. C., Liu, K. Z. and Lee, N. H. 2001. Screening of the tyrosinase inhibition and hyaluronidase inhibition activities, and radical scavenging effects using plants in Cheju. Ko. J. Pharmacogn. 32, 175-180.
  18. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  19. Wang, H. and Joseph, J. A. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27, 612-616. https://doi.org/10.1016/S0891-5849(99)00107-0
  20. Garciia, J. L., Asadinezhad, A., Pachernik, J., Lehocky, M., Junkar, I., Humpolicek P., Saha, P. and Valasek, P. 2010. Cell Proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules. 15, 2845-2856. https://doi.org/10.3390/molecules15042845
  21. Puri, M., Sharma, D. and Barrow, C. J. 2012. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 30, 37-44. https://doi.org/10.1016/j.tibtech.2011.06.014
  22. Lee, S. H., Yang, H. W., Ding, Y. L., Wang, Y., Jeon, Y. J., Moon, S. H., Jeon, B. T. and Sung, S. H. 2015. Anti-inflammatory effects of enzymatic hydrolysates of velvet antler in Raw 264.7 cells in vitro and zebrafish model. EXCLI J. 14, 1122-1132.
  23. Lee, S. H., Park, M. H., Park, S. J., Kim, J., Kim, Y. T., Oh, M. C., Jeong, Y., Kim, M. S., Han, J. S. and Jeon, Y. J. 2012. Bioactive compounds extracted from Ecklonia cava by using enzymatic hydrolysis protects high glucose-induced damage in INS-1 pancreatic $\beta$-cells. Appl. Biochem. Biotechnol. 167, 1973-1985. https://doi.org/10.1007/s12010-012-9695-7
  24. Saito, M., Kunisaki, N., Urano, N. and Kimura, S. 2006. Collagen as the major edible component of sea cucumber (Stichopus japonicus). J. Food Sci. 67, 1319-1322.
  25. Zulueta, A., Esteve, M. J. and Frigola, A. 2009. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 114, 310-316. https://doi.org/10.1016/j.foodchem.2008.09.033
  26. Lu, C. Y., Lee, H. C., Fahn, H. J. and Wei, Y. H. 1999. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat. Res. Fundam. Mol. Mech. Mutagen. 423, 11-21. https://doi.org/10.1016/S0027-5107(98)00220-6
  27. Hitoshi, M. 2010. Role of antioxidants in the skin: anti-aging effects. J. Dermatol. Sci. 58, 85-90. https://doi.org/10.1016/j.jdermsci.2010.03.003
  28. Poljsak, B. and Dahmane, R. 2012. Free Radicals and extrinsic skin aging. Dermatol Res. Practi. 2012, 135206.
  29. Schieber, M. and Navdeep, S. C. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
  30. Kammeyer, A. and Luiten, R. M. 2015. Oxidation events and skin aging. Ageing Res. Rev. 21, 16-29. https://doi.org/10.1016/j.arr.2015.01.001
  31. Raha, S. and Robinson B. H. 2000. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502-508. https://doi.org/10.1016/S0968-0004(00)01674-1
  32. Kohen, R. 1999. Skin antioxidants: Their role in aging and in oxidative stress new approaches for their evaluation. Biomed. Pharmacother. 53, 181-192. https://doi.org/10.1016/S0753-3322(99)80087-0
  33. Hochberg, M., Kohen, R. and Enk., C. D. 2006. Role of antioxidants in prevention of pyrimidine dimer formation in UVB irradiated human HaCaT keratinocytes. Biomed. Pharmacother. 60, 233-237. https://doi.org/10.1016/j.biopha.2006.04.008
  34. Cui, Y., Kima, D., Park, S., Yoon, J., Kima, S., Kwon, S. and Park, K. 2004. Involvement of ERK and p38 MAP kinase in AAPH-induced COX-2 expression in HaCaT cells. Chem. Phys. Lipids. 129, 43-52. https://doi.org/10.1016/j.chemphyslip.2003.11.004
  35. Zhou, X. and Wang, C. 2012. Antioxidant peptides isolated from sea cucumber Stichopus Japonicus. Eur. Food Res. Technol. 234, 441-447. https://doi.org/10.1007/s00217-011-1610-x
  36. Selbi, W., Day, A. J., Rugg, M. S., Fulop, C., de la Motte, C. A., Bowen, T., Hascall, V. C. and Phillips, A. O. 2006. Overexpression of hyaluronan synthase 2 alters hyaluronan distribution and function in proximal tubular epithelial cells. J. Am. Soc. Nephrol. 17, 1553-1567. https://doi.org/10.1681/ASN.2005080879
  37. Stern, R. and Maibach, H. I. 2008. Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin. Dermatol. 26, 106-122. https://doi.org/10.1016/j.clindermatol.2007.09.013
  38. Scotti, L., Singla, R. K., Ishiki, H. M., Mendonca, F. J., da Silva, M. S., Barbosa Filho, .J. M. and Scotti, M. T. 2016. Recent advancement in natural hyaluronidase Inhibitors. Curr. Top. Med. Chem. 16, 2525-2531. https://doi.org/10.2174/1568026616666160414123857
  39. Calve, S., Isaac, J., Gumucio, J. P. and Mendias, C. L. 2012. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. Am. J. Physiol. Cell Physiol. 303, C577-C588. https://doi.org/10.1152/ajpcell.00057.2012
  40. Zhang, Y., Song, S., Song, D., Liang, H., Wang, W. and Ji, A. 2010. Proliferative effects on neural stem/progenitor cells of a sulfated polysaccharide purified from the sea cucumber Stichopus japonicus. J. Biosci. Bioeng. 109, 67-72. https://doi.org/10.1016/j.jbiosc.2009.07.010