DOI QR코드

DOI QR Code

Design and Test of a Deployment Mechanism for the Composite Reflector Antenna

복합재료 반사판 안테나의 전개 메커니즘 설계 및 시험

  • Chae, Seungho (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Oh, Young-Eun (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Soo-Yong (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Roh, Jin-Ho (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 채승호 (한국항공대학교 항공우주 및 기계공학부) ;
  • 오영은 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이수용 (한국항공대학교 항공우주 및 기계공학부) ;
  • 노진호 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2018.09.14
  • Accepted : 2018.11.02
  • Published : 2018.12.31

Abstract

The dynamic characteristics of the deployable composite parabolic reflector with several panels were numerically and experimentally investigated. The deployment mechanism is designed to efficiently fit in a small volume. The parameters guiding the deployment are determined by considering; the number of panels, folding/twisting angles, and the driving forces of actuating devices. The panels are fabricated using carbon fiber reinforced plastics (CFRPs). The zero-gravity simulator is manufactured for the unfolding test. The deployment behaviors of the reflector are finally observed.

여러 패널들로 파라볼라 반사판 형상을 가지는, 전개형 복합재료 안테나의 동적 특성을 수치적 그리고 실험적으로 살펴보고자 한다. 전개 장치들은 여러 패널들이 작은 공간에 효과적으로 수납될 수 있도록 설계하였다. 반사판 패널의 개수, 패널들의 폴딩(folding)/트위스팅(twisting) 각도, 그리고 전개 작동기 등의 특성을 고려하여 전개시 필요한 설계변수를 결정하였고, 반사판 패널은 CFRP(carbon fiber reinforced plastics)으로 제작하였다. 무중력 전개장치를 제작하여 반사판 안테나의 전개시험을 수행하였고, 동적 전개특성을 관찰하였다.

Keywords

OJSSBW_2018_v12n6_58_f0001.png 이미지

Fig. 1 TRW sunflower antenna

OJSSBW_2018_v12n6_58_f0002.png 이미지

Fig. 2 DAISY antenna

OJSSBW_2018_v12n6_58_f0003.png 이미지

Fig. 3 Zero-gravity deployment device with trolleys and rails

OJSSBW_2018_v12n6_58_f0004.png 이미지

Fig. 4 Zero-gravity setting with helium balloons.

OJSSBW_2018_v12n6_58_f0005.png 이미지

Fig. 5 Zero-gravity tracking system

OJSSBW_2018_v12n6_58_f0006.png 이미지

Fig. 6 Parabola reflector model

OJSSBW_2018_v12n6_58_f0007.png 이미지

Fig. 7 Rotated reflector panel

OJSSBW_2018_v12n6_58_f0008.png 이미지

Fig. 8 Folded reflector antenna panels

OJSSBW_2018_v12n6_58_f0009.png 이미지

Fig. 9 Deploying trajectory of panels

OJSSBW_2018_v12n6_58_f0010.png 이미지

Fig. 10 Manufactured CFRP panel

OJSSBW_2018_v12n6_58_f0011.png 이미지

Fig. 11 Twisting/folding deployment device

OJSSBW_2018_v12n6_58_f0012.png 이미지

Fig. 12 Deploying sequences of reflector antenna

OJSSBW_2018_v12n6_58_f0013.png 이미지

Fig. 13 Joint device between composite panels and aluminium parts

OJSSBW_2018_v12n6_58_f0014.png 이미지

Fig. 14 Folded composite reflector panels

OJSSBW_2018_v12n6_58_f0015.png 이미지

Fig. 15 Deployed composite reflector panels

OJSSBW_2018_v12n6_58_f0016.png 이미지

Fig. 16 Zero-gravity deployment device

OJSSBW_2018_v12n6_58_f0017.png 이미지

Fig. 17 Air bushing system

OJSSBW_2018_v12n6_58_f0018.png 이미지

Fig. 18 Zero-gravity deployment test system

OJSSBW_2018_v12n6_58_f0019.png 이미지

Fig. 19 Inverted pendulum model

OJSSBW_2018_v12n6_58_f0020.png 이미지

Fig. 20 Deployment angle with respect to time

OJSSBW_2018_v12n6_58_f0021.png 이미지

Fig. 21 Deployment sequences with respect to time

OJSSBW_2018_v12n6_58_f0022.png 이미지

Fig. 22 Measured force applied to the panel during the deployment

Table 1 Designed configuration of the reflector antenna

OJSSBW_2018_v12n6_58_t0001.png 이미지

References

  1. Taek-Kyung Lee, "Design of Deployable Lightweight Antenna for Satellite SAR," The Journal of korean Institute of Electromagnetic Engineering and Science, Vol. 25, No. 11, 2014, pp. 1104-1112. https://doi.org/10.5515/KJKIEES.2014.25.11.1104
  2. Acher. J. S, Palmer. W. B, "Antenna Technology for QUAST Application," Large Satellite Antennas and Space Technology, NASA CR-2368, 1984.
  3. Dornier, "FIRST Technology study: Multisurface control Mechanism for a Deployable Antenna." Dornier Report RP-FA-D003, 1987.
  4. Kobza, Carl R, "Space Qualification Testing of Shape Memory Alloy Deployable Cubesat Antenna," Technical Report, 2016, AFIT WPAFB United States.
  5. H. R Moon, S. H Park. "Development of Deployment Test Equipment for Large Solar Array with Tape Spring Hinge," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 46, No. 7, 2018, pp. 583-591 https://doi.org/10.5139/JKSAS.2018.46.7.583
  6. Hwang, Kwon-Tae, Cho, Chang-Lae, Lee, Dong-Woo, Lee, Sang-Hoon, Moon, Guee-Won. "System Alignment Technology in Korea Multi-Purpose Satellite." Current Industrial and Technological Trends in Aerospace, 11.1 (2013.7): 83-92.
  7. Won Ho Cha, Goo-Hwan Shin. "Research of Ground Test Equipment for Zero-gravity Deployment Test." The Korea Society for Aeronautical and Space Science Conference, 2017, 1020-1021.
  8. Jung-Su Choi, Sang-Mu Moon, Yong-Sik Yoon, Hyung-Wan Kim, Sung-Bong Choi. "Deployable Communication Antenna Alignment for Geostationary Satellite." Journal of the Korean Society for Aeronautical & Space Sciences, 39.3 (2011.3): 279-288. https://doi.org/10.5139/JKSAS.2010.39.3.279
  9. Yang. M, Xu. Z, He. Y, Liu. Y & Wang B, "Zero Gravity Tracking System Using Constant Tension Suspension for a Multidimensional Framed Structure Space Antenna," InMechanical and Aerospace Engineering(ICMAE), 2016, 7th International conference on, pp. 614-621, IEEE.
  10. Seung-Yup Lee, Suk-yong Jeong, Yoon-hyuk Choi, Ki-Dae Cho, "Mechanism Modeling and Analysis of Deployable Satellite Antenna," Journal of the Korean Society for Aeronautical & Space Sciences, Vol.42, No. 7, 2014, pp. 601-609. https://doi.org/10.5139/JKSAS.2014.42.7.601
  11. Young-Jun Choi, Hyun-Ung Oh, Yong-Hoon Choi, Kyung-Joo Lee, "Dynamic Analysis of a Deployable Space Structure Using Passive Deployment Mechanism," Journal of the Korea Institute of Military Science and Technology, Vol. 11, No. 3, 2008, pp. 161-168.